• Title/Summary/Keyword: Foundation soil

Search Result 1,113, Processing Time 0.025 seconds

Reinforcement of the Foundation using C,G.S (C.G.S공법에 의한 기초지반 보강)

  • 천병식;권형석;정의원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.441-448
    • /
    • 2000
  • While the Grouting has been used to reinforce the foundation of structures in wide range of application, there need complementary measures against problems such as pollution, durability, influence on the adjacent structures. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the Compaction Grouting, Also, the effectiveness of the ground improvement and the bearing capacity of the Compaction Pile has been verified by the S.P.T and core strength.

  • PDF

Analysis of free vibration of beam on elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Differential transform method (DTM) for free vibration analysis of both ends simply supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.

Deformation analysis of a geocell mattress using a decoupled iterative method

  • Zhang, Ling;Zhao, Minghua;Zhao, Heng
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.775-790
    • /
    • 2013
  • Deformation analysis is a major concern in many geotechnical applications. In this paper, the deformation behavior of a geocell mattress subjected to symmetric loads was studied. The mattress was idealized as an elastic foundation beam. The horizontal beam-soil interfacial shear resistances at the beam top and bottom sides were taken into account by assuming the resistances to be linear with the relative horizontal displacements. A decoupled iterative method was employed to solve the differential displacement equations derived from the force analysis of a beam element and to obtain the solutions for the deformations and internal forces of the geocell reinforcement. The validity of the present solutions was verified by the existing finite element method and power-series solutions.

A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building (건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (2))

  • Ryozo, Ooka;Hwang, Suk-Ho;Kentaro, Sekine;Yosuke, Shimawaki;Nam, Yu-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.155-160
    • /
    • 2005
  • To purpose of this research is to develop the numerical model for simulating performance of ground heat exchanger with high prediction accuracy. This paper describes the development of a numerical model that simulates the heat transfer between ground and circulation water in ground heat exchanger. Furthermore, we propose the estimating technique of soil properties, such as thermal conductivity, heat capacity and hydraulic conductivity, based on ground investigation. Comparison between experiment and numerical analysis based on the model developed above was conducted under the condition of the experiment in 2004. The result of analysis agreed well with the experimental result.

  • PDF

Plastic Deformation of Rail Roadbad through Laboratory Cyclic Loading Test (실내 진동 모형실험을 통한 철도 노반재료의 소성변형특성)

  • Shin, Eun-Chul;Kang, Hyoun-Hoi;Choi, Chan-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1705-1711
    • /
    • 2008
  • Analysis of settlement of foundation under the cyclic loading is very important element in the field construction. The fatigue of construct is inflicted by wheel load of mobile unit with railroad and superhighway. The settlement behavior under the cyclic loading is investigated through Power Model by Li and Selig. However, the settlement tendency of foundation appears to be the settlement of general Europe cohesive soil. In this study, the Power Model was used to determine the plastic deformation for sandy soil. Based on the laboratory cyclic loading test a, m, b parameters, for using in the Power Model were presented.

  • PDF

Simple Seismic Design Procedure for Pile Foundation of Highway Bridge (도로교 말뚝기초의 간편한 내진설계절차)

  • 최용규;서정혜;김동철
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.117-126
    • /
    • 2001
  • 도로교의 대표적인 기초형식인 말뚝기초에 대한 내진설계방법으로 여러 가지 방법들이 제안되어 있다. 이 중 동적해석법과 같은 복잡한 절차에 의한 해석은 적용성에 한계가 있을 수 있고, 실무에서의 적용상 많은 어려움이 예상되었다. 본 연구에서는 등가정적해석법을 이용한 도로교 기초 말뚝에 대한 간편한 내진설계절차를 제안하였으며, 사례에 적용하였다. 또한, 제안된 간편한 내진설계절차에 사용할 수 있는 해석코드의 적용성을 확인하기 위하여 수식적 정해에 의한 계산결과를 기준 값으로 하여 해석코드에 의한 해석결과들을 비교.분석하였다. 또한, 지진 진동을 이용한 동적 해석결과와 SPS 상호작용(Superstructure - pile - soil interaction)을 고려한 해석결과를 수식적 정해에 의한 결과와 비교.분석하였다.

  • PDF

Applications of the Light Weight Method of EPS to Sub-road Fills at the Seaside (해안 도로상의 EPS 하중경감공법의 해석)

  • 장용채
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.233-239
    • /
    • 2000
  • The expansion of old road is needed in constructing the entrance at the $\bigcirc$$\bigcirc$I/C road in $\bigcirc$$\bigcirc$city. To strength the national competition, many agents who concerned do their best for finishing that construction early as soon as possible. In generally, soil embankment on soft foundation is caused to reduce the stability by making the settlement of ground surface due to the over load. Thus, we try to make it stable by building EPS embankment construction which in our working place is one kind of the method of light embankment construction after excavating the original ground.

  • PDF

Applications of the EPS Embankment Metod to Earth Fils at the Seaside (해안 매립지역의 EPS 성토공법 적용)

  • 장용채;조성민;이유옥
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.219-224
    • /
    • 1999
  • The expansion of old road is needed in construction the entrance at the $\bigcirc$$\bigcirc$I/C road in $\bigcirc$$\bigcirc$city. To strength the national competition, many agents who concerned do their best for finishing that construction early as soon as possible. In generally, soil embankment on soft foundation is caused to reduce the stability by making the settlement of ground surface due to the over load. Thus, we try to make it stable by building EPS embankment construction which in our working place is one kind of the method of light embankment construction after excavating the original ground.

Isogeometric analysis of the seismic response of a gravity dam: A comparison with FEM

  • Abdelhafid Lahdiri;Mohammed Kadri
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.81-96
    • /
    • 2024
  • Modeling and analyzing the dynamic behavior of fluid-soil-structure interaction problems are crucial in structural engineering. The solution to such coupled engineering systems is often not achievable through analytical modeling alone, and a numerical solution is necessary. Generally, the Finite Element Method (FEM) is commonly used to address such problems. However, when dealing with coupled problems with complex geometry, the finite element method may not precisely represent the geometry, leading to errors that impact solution quality. Recently, Isogeometric Analysis (IGA) has emerged as a preferred method for modeling and analyzing complex systems. In this study, IGA based on Non-Uniform Rational B-Splines (NURBS) is employed to analyze the seismic behavior of concrete gravity dams, considering fluid-structure-foundation interaction. The performance of IGA is then compared with the classical finite element solution. The computational efficiency of IGA is demonstrated through case studies involving simulations of the reservoir-foundation-dam system under seismic loading.

Probabilistic Seepage Analysis by the Finite Element Method Considering Spatial Variability of Soil Permeability (투수계수의 공간적 변동성을 고려한 유한요소법에 의한 확률론적 침투해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.93-104
    • /
    • 2011
  • In this paper, a numerical procedure of probabilistic steady seepage analysis that considers the spatial variability of soil permeability is presented. The procedure extends the deterministic analysis based on the finite element method to a probabilistic approach that accounts for the uncertainties and spatial variation of the soil permeability. Two-dimensional random fields are generated based on a Karhunen-Lo$\grave{e}$ve expansion in a fashion consistent with a specified marginal distribution function and an autocorrelation function. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses were performed to verify the application potential of the proposed method and to study the effects of uncertainty due to the spatial heterogeneity on the seepage behavior of soil foundation beneath water retaining structure with a single sheet pile wall. The results showed that the probabilistic framework can be used to efficiently consider the various flow patterns caused by the spatial variability of the soil permeability in seepage assessment for a soil foundation beneath water retaining structures.