• Title/Summary/Keyword: Foundation soil

검색결과 1,106건 처리시간 0.024초

Backfill and subsoil interaction effects on seismic behavior of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.117-138
    • /
    • 2014
  • The main focus of the current study is to evaluate the dynamic behavior of a cantilever retaining wall considering backfill and soil/foundation interaction effects. For this purpose, a three-dimensional finite element model (FEM) with viscous boundary is developed to investigate the seismic response of the cantilever wall. To demonstrate the validity of the FEM, analytical examinations are carried out by using modal analysis technique. The model verification is accomplished by comparing its predictions to results from analytical method with satisfactory agreement. The method is then employed to further investigate parametrically the effects of not only backfill but also soil/foundation interactions. By means of changing the soil properties, some comparisons are made on lateral displacements and stress responses. It is concluded that the lateral displacements and stresses in the wall are remarkably affected by backfill and subsoil interactions, and the dynamic behavior of the cantilever retaining wall is highly sensitive to mechanical properties of the soil material.

Soil-structure interaction effects on the seismic response of multistory frame structure

  • Botic, Amina;Hadzalic, Emina;Balic, Anis
    • Coupled systems mechanics
    • /
    • 제11권5호
    • /
    • pp.373-387
    • /
    • 2022
  • In this paper,soil-structure interaction effects on the seismic response of multistory frame structure on raft foundation are numerically analyzed. The foundation soil profile is assumed to consists of a clay layer of variable thicknessresting on bedrock. Amodified plane-strain numerical model isformed in the software Plaxis, and both free vibration analysis, and earthquake analysis for a selected ground motion accelerogram are performed. The behavior of the structure is assumed to be linear elastic with Rayleigh viscous damping included. The behavior of the clay layer is modeled with a Hardening soil model with small strain stiffness. The computed results in terms of fundamental period and structural horizontal displacementsfor the case of fixed base and for different thicknesses of clay layer are presented, compared, and discussed.

Mat Foundation Analysis Using Variable Node Plate Bending Element (변절점 굉판휨요소를 이용한 전면기초의 해석)

  • 최창근;김한수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.7-12
    • /
    • 1992
  • The variable node plate bending element, ie, the element with one or two additional mid-side nodes is used in the analysis of mat foundation to generate the nearly ideal grid model in which more nodes are defined near the column location. The plate bending element used in this study is the one based on Mindlin/Reissner plate theory with substitute shear strain field and the nodal stresses of that element are obtained by the local smoothing technique. The interaction of the soil material with the mat foundation is modeled with Winkler springs connected to the nodal points in the mat model. The vertical stiffness of the soil material are represented in terms of a modulus of subgrade reaction and are computed in the same way as to the computation of consistent nodal force of uniform surface loading. Several mesh schemes were proposed and tested to find the most suitable scheme for mat foundation analysis.

  • PDF

Reinforcement of Building Foundation by the Low Slump Mortar Grout (저유동성 몰탈형 주입재에 의한 건물기초보강)

  • 천병식;고용일;권형석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.71-76
    • /
    • 2000
  • In generally, grouting consists of injecting a suspension or solution into the voids of soils. The low slump mortar grout has been used in America since 1950's. The Compaction Grouting, the injection of a very stiff under relatively high pressure, form a cylinderical grout support pile. The grout generally does not enter soil pores but remains in homogeneous mass that gives controlled displacement either to compact loose soils, or for lifting of structures, or both. In this paper, on the case of the reinforcement construction of 00 plant that the foundation's bearing capacity is insufficient and is to reinforce the foundation, a study has been peformed to analyze the effectiveness of the ground improvement. The bearing capacity of the Compaction Pile has been verified by the S.P.T and the settlement of the improved ground has been monitored rising the magnetic extensometer.

  • PDF

Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation

  • Hizal, Caglayan;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.969-988
    • /
    • 2016
  • Vibration analysis of the beams on elastic foundation has gained the great interest of many researchers. In the literature, there are many studies that focus on the free vibration analysis of the beams on one or two parameter elastic foundations. On the other hand, there are no sufficient studies especially focus on the comparison of dynamic response including the bending moment and shear force of the beams resting on Winkler and two parameter foundations. In this study, dynamic response of the axially loaded Timoshenko beams resting on modified Vlasov type elastic soil was investigated by using the separation of variables method. Governing equations were obtained by assuming that the material had linear elastic behaviour and mass of the beam was distributed along its length. Numerical analysis were provided and presented in figures to find out the differences between the modified Vlasov model and conventional Winkler type foundation. Furthermore, the effect of shear deformation of elastic soil on the dynamic response of the beam was investigated.

Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method

  • Orbanich, C.J.;Ortega, N.F.
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.169-182
    • /
    • 2013
  • The mechanical behavior of rectangular foundation plates with perimetric beams and internal stiffening beams of the plate is herein analyzed, taking the foundation design into account. A series of dimensionless parameters related to the geometry of the studied elements were defined. In order to generalize the problem statement, an initial settlements was considered. A numeric procedure was developed for the resolution by means of the Finite Differences Method that takes into account the stiffness of the plate, the perimetric and internal plate beams and the soil reaction module. Iterative algorithms were employed which, for each of the analyzed cases, made it possible to find displacements and reaction percentages taken by the plate and those that discharge directly into the perimetric beams, practically without affecting the plate. To enhance its mechanical behavior the internal stiffening beams were prestressed and the results obtained with and without prestressing were compared. This analysis was made considering the load conditions and the soil reaction module constant.

The effective depth of soil stratum for plates resting on elastic foundation

  • Daloglu, Ayse T.;Ozgan, K.
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.263-276
    • /
    • 2004
  • The purpose of this paper is to determine the subsoil depth affected from the load on the plate resting on elastic foundation using stress distribution within the subsoil that will be occurred depending on the loading and dimension of the plate. An iterative method is developed in order to determine the effective depth of the subsoil under the plate. Numerical examples from the technical literature are solved by means of the method suggested herein and displacements, bending moments and shear forces are presented in graphical and tabular forms to evaluate the effects of the limit depth considered in the study. Results showed the efficiency and simplicity of the present approach for the plate resting on an elastic foundation.

A Study on Displacement Effect of Different Foundation using Concrete and Rubble (콘크리트, 잡석에 의한 이질기초 치환효과에 관한 연구)

  • Lim, Hae-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • 제2권2호
    • /
    • pp.189-194
    • /
    • 2011
  • To reinforce bearing capacity-changed section or different foundation in the same building, empirical or simple tools have been used. To solve this problem, we suggest the analytical solution that can evaluate and reinforce the stability of foundation. To estimate the effect of reinforcement by replacement in different foundation, soil stiffness evaluation method taking into account the influence factor with respect to depth beneath the foundation need to be applied. In this paper, graphs and relevant formulae are suggested to calculate equivalent soil reaction coefficient showing the effect of reinforcement by crushed stone and lean concrete replacement.

Foundation-soil-foundation Interaction of Shallow Foundations Using Geo Centrifuge: Experimental Approach (원심모형실험을 이용한 얕은 기초의 기초-지반-기초 상호작용: 실험적 접근)

  • Ngo, Linh Van;Kim, Jae-Min;Lim, Jaesung;Lee, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • 제34권1호
    • /
    • pp.25-35
    • /
    • 2018
  • Geocentrifuge tests are performed to investigate the structure-soil-structure interaction of shallow foundations that have various sizes. The soil specimen is prepared by using the air-pluviation, and the dynamic responses of the foundation are monitored with separation distances between the two foundations and the embedment. During the centrifugal test, the measured ground acceleration shows a tendency to increase with the increase of the input seismic amplitude, and maximum acceleration is measured at the surface due to the ground amplification. As the separation distance between the two foundations decreases, the ratio of the response spectral acceleration (RRS) increases and the period at the peak RRS decreases due to the structure-soil-structure interaction (SSSI). The RRS of the two foundations tends to decrease when the foundations are buried in the ground at the same separation distance.

Mitigation of seismic pounding between RC twin high-rise buildings with piled raft foundation considering SSI

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.625-635
    • /
    • 2022
  • High-rise buildings (HRBs) are considered one of the most common structures nowadays due to the population growth, especially in crowded towns. The lack of land in crowded cities has led to the convergence of the HRBs and the absence of any gaps between them, especially in lands with weak soil (e.g., liquefaction-prone soil), but then during earthquakes, these structures may be exposed to the risk of collision between them due to the large increase in the horizontal displacements, which may be destructive in some cases to the one or both of these adjacent buildings. To evaluate methods of reducing the risk of collision between adjacent twin HRBs, this research investigates three vibration control methods to reduce the risk of collision due to five different earthquakes for the case of two adjacent reinforced concrete (RC) twin high-rise buildings of 15 floors height without gap distance between them, founded on raft foundation supported on piles inside a liquefaction-prone soil. Contact pounding elements between the two buildings (distributed at all floor levels and at the raft foundation level) are used to make the impact strength between the two buildings realistic. The mitigation methods investigated are the base isolation, the tuned mass damper (TMD) method (using traditional TMDs), and the pounding tuned mass damper (PTMD) method (using PTMDs connected between the two buildings). The results show that the PTMD method between the two adjacent RC twin high-rise buildings is more efficient than the other two methods in mitigating the earthquake-induced pounding risk.