• 제목/요약/키워드: Foundation soil

검색결과 1,106건 처리시간 0.029초

기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석 (Nonlinear Seismic Analysis of Steel Buildings Considering the Stiffnesses of the Foundation-Soil System)

  • 오영희;김용석
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.173-180
    • /
    • 2006
  • 구조물의 지진응답은 기초지반조건의 영향을 받는다. 이 연구에서는 고정지반과 연약지반을 고려한 3, 5, 7층 철골 건축구조물의 밑면전단력을 산정하기 위해 선형 시간이력지진해석과 비선형 Pushover 정적지진해석을 수행하였다. 등가정적강성식으로 구한 기초지반강성은 SAP2000의 Link 요소 중 Damper 요소를 사용하여 입력하였다. 범용구조해석 프로그램 SAP2000에 의한 시간이력으로 구한 철골건축구조물의 밑면전단력을 국내내진설계기준, UBC-97 설계응답스펙트럼, Pushover 정적 비선형해석으로 구한 밑면전단력과 비교하였다. 중력하중과 풍하중으로 설계된 철골 건축구조물은 0.11g의 중진에 대해 탄성응답을 보였고, 탄성 연약지반에서 구조물-지반의 상호작용과 지반 증폭에 의해 구조물의 변위와 밑면전단력이 증가되었다. 따라서, 중약진 지역에서의 건축구조물은 연약지반의 특성을 고려하여 탄성지진해석을 수행하는 것이 더 합리적이다.

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

기초의 강성과 상재하중이 보강토 옹벽의 거동에 미치는 영향 (Effects of Foundation Stiffness and Surface Loading on the Behavior of Soil-reinforced Segmental Retaining Walls)

  • 유충식
    • 한국지반신소재학회논문집
    • /
    • 제2권2호
    • /
    • pp.13-24
    • /
    • 2003
  • 본 논문에서는 유한요소해석을 통해 기초지반의 강성과 상재하중이 블록식 보강토 옹벽에 미치는 영향을 고찰한 내용을 다루었다. 이를 위해 기초지반의 강성과 상재하중의 위치를 변화시키며 매개변수 연구를 수행하였으며 해석결과에서는 벽체의 변위와 보강재의 유발인장력은 기초지반의 강성이 감소함에 따라 증가하는 것으로 나타났다. 한편, 해석결과에 따르면 현재 설계기준에서 적용되고 있는 상재하중 처리 방법은 경우에 따라서 상재하중의 영향을 지나치게 과대평가 하는 것으로 나타났으며 상재하중이 보강영역에 근접하여 작용할 경우 외적안정성 검토시 주의를 요하는 것으로 나타났다. 본 논문에서는 본 연구를 통해 얻어진 결과가 실무적 측면에서 의미하는 바를 심도 있게 고찰하였다.

  • PDF

Seismic analysis of frame-strap footing-nonlinear soil system to study column forces

  • Garg, Vivek;Hora, Manjeet S.
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.645-672
    • /
    • 2013
  • The differential settlements and rotations among footings cannot be avoided when the frame-footing-soil system is subjected to seismic/dynamic loading. Also, there may be a situation where column(s) of a building are located near adjoining property line causes eccentric loading on foundation system. The strap beams may be provided to control the rotation of the footings within permissible limits caused due to such eccentric loading. In the present work, the seismic interaction analysis of a three-bay three-storey, space frame-footing-strap beam-soil system is carried out to investigate the interaction behavior using finite element software (ANSYS). The RCC structure and their foundation are assumed to behave in linear manner while the supporting soil mass is treated as nonlinear elastic material. The seismic interaction analyses of space frame-isolated footing-soil and space frame-strap footing-soil systems are carried out to evaluate the forces in the columns. The results indicate that the bending moments of very high magnitude are induced at column bases resting on eccentric footing of frame-isolated footing-soil interaction system. However, use of strap beams controls these moments quite effectively. The soil-structure interaction effect causes significant redistribution of column forces compared to non-interaction analysis. The axial forces in the columns are distributed more uniformly when the interaction effects are considered in the analysis.

Settlement analysis of pile cap with normal and under-reamed piles

  • Kumar, Madisetti Pavan;Raju, P. Markandeya;Jasmine, G. Vincent;Aditya, Mantini
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.525-535
    • /
    • 2020
  • The use of pile foundations has become more popular in recent years, as the combined action of the pile cap and the piles can increase the bearing capacity, reduce settlement, and the piles can be arranged so as to reduce differential deflection in the pile cap. Piles are relatively long, slender members that transmit foundation loads through soil strata of low bearing capacity to deeper soil or rock strata having a high bearing capacity. In this study analysis of pile cap with considering different parameters like depth of the pile cap, width and breadth of the pile cap, type of piles and different types of soil which affect the behaviour of pile cap foundation is carried out by using Finite Element Software ANSYS. For understanding the settlement behaviour of pile cap foundation, parametric studies have been carried out in four types of clay by varying pile cap dimensions with two types of piles namely normal and under-reamed piles for different group of piles. Furthermore, the analysis results of settlement and stress values for the pile cap with normal and under-reamed piles are compared. From the study it can be concluded that settlement values of pile cap with under-reamed pile are less than the settlements of pile cap with normal pile. It means that the ultimate load bearing capacity of pile cap with under-reamed piles are greater than the pile cap with normal piles.

Estimation of ultimate bearing capacity of shallow foundations resting on cohesionless soils using a new hybrid M5'-GP model

  • Khorrami, Rouhollah;Derakhshani, Ali
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.127-139
    • /
    • 2019
  • Available methods to determine the ultimate bearing capacity of shallow foundations may not be accurate enough owing to the complicated failure mechanism and diversity of the underlying soils. Accordingly, applying new methods of artificial intelligence can improve the prediction of the ultimate bearing capacity. The M5' model tree and the genetic programming are two robust artificial intelligence methods used for prediction purposes. The model tree is able to categorize the data and present linear models while genetic programming can give nonlinear models. In this study, a combination of these methods, called the M5'-GP approach, is employed to predict the ultimate bearing capacity of the shallow foundations, so that the advantages of both methods are exploited, simultaneously. Factors governing the bearing capacity of the shallow foundations, including width of the foundation (B), embedment depth of the foundation (D), length of the foundation (L), effective unit weight of the soil (${\gamma}$) and internal friction angle of the soil (${\varphi}$) are considered for modeling. To develop the new model, experimental data of large and small-scale tests were collected from the literature. Evaluation of the new model by statistical indices reveals its better performance in contrast to both traditional and recent approaches. Moreover, sensitivity analysis of the proposed model indicates the significance of various predictors. Additionally, it is inferred that the new model compares favorably with different models presented by various researchers based on a comprehensive ranking system.

Fragility evaluation of integral abutment bridge including soil structure interaction effects

  • Sunil, J.C.;Atop, Lego;Anjan, Dutta
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.201-213
    • /
    • 2021
  • Contrast to the conventional jointed bridge design, integral abutment bridges (IABs) offer some marked advantages like reduced maintenance and enhanced service life of the structure due to elimination of joints in the deck and monolithic construction practices. However, the force transfer mechanism during seismic and thermal movements is a topic of interest owing to rigid connection between superstructure and substructure (piers and abutments). This study attempts to model an existing IAB by including the abutment backfill interaction and soil-foundation interaction effects using Winkler foundation assumption to determine its seismic response. Keeping in view the significance of abutment behavior in an IAB, the probability of damage to the abutment is evaluated using fragility function. Incremental Dynamic Analysis (IDA) approach is used in this regard, wherein, nonlinear time history analyses are conducted on the numerical model using a selected suite of ground motions with increasing intensities until damage to abutment. It is concluded from the fragility analysis results that for a MCE level earthquake in the location of integral bridge, the probability of complete damage to the abutment is minimal.

재하방법에 따른 사질토 지반의 연직응력 특성 (Characteristic of Vertical Stress in Sandy Soil according to Loading Types)

  • 남효석;이상호;권무남
    • 한국농공학회논문집
    • /
    • 제51권6호
    • /
    • pp.83-90
    • /
    • 2009
  • This study was carried out to evaluate the vertical stress properties in sandy soil according to changes of loading type in soil bin compacted three layers. The following conclusions and comparisons have been made based on careful analysis from theoretical and experimental methods. : When sandy soil subjected to cycle-loading, compression of foundation and diffusion of vertical stress increment(${\Delta}{\sigma}_2$) were influenced by magnitude of loading plate. When sandy soil subjected to reloading after removing of pre-loading, the distribution of ${\Delta}{\sigma}_2$ depth at one time of loading plate width was different from its distribution at more deep point cause of load hysteresis, so in case of design of structure, the effect of ${\Delta}{\sigma}_2$ as depth must be considered. The increment of vertical stress will be different as loading condition and foundation depth, the loading condition must be considered in case of structure design.

강성지반위 사질토층에 위치한 얕은기초의 침하량특성분석 (Analysis of Settlement Characteristics of Shallow Foundation on Sandy Soil Overlained by Rigid Ground)

  • 황희석;김동건;유남재
    • 산업기술연구
    • /
    • 제34권
    • /
    • pp.45-52
    • /
    • 2014
  • In this paper the settlement characteristic of shallow foundation on sandy soil overlained by rigid ground was investigated by analyzing results of model tests. For model experiments, model tests were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sandy layer(H) to the width of model strip footing(B). As result of tests, settlement of sandy soils increases as the value of H/B increases, whereas it increases with relative density of soil. Bearing capacity decreases as the thickness of the sand layer relative to the footing width increases. In order to analyze the settlement characteristics of sandy ground, the results of model tests were compared with the predicted values using the empirical formulas proposed by Terzaghi, De Beer and Schmertmann. The method by De Beer was found to be in good agreements with test results.

  • PDF