• Title/Summary/Keyword: Foundation model test

Search Result 403, Processing Time 0.025 seconds

Analysis of Time-dependent Axial Force of Shores using the Winkler Model (Winkler모델을 이용한 동바리의 시간의존적 축력 해석법)

  • 우창훈;김선영;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.27-34
    • /
    • 2002
  • In the case of reinforced concrete structures, the knowledge of load transfer in the long-term behavior analysis considering construction sequence is very important. Even though long-term behavior of concrete structures has been widely studied, the studies on the time-dependent axial force variation of shore have been scarce to date. In order to investigate the shore behaviors under actual construction conditions, a three-story test frame was constructed on a construction site. The entire construction schedule for the test frame was made to follow the schedule of an actual three-story frame. To analyze the data collected from the test frame, an analysis method based on the Winkler foundation model was developed. This analysis method accurately Predicts the time-dependent behavior of shore. The analysis results coincide well with those obtained by the Midas GENw program

  • PDF

Single piles under cyclic lateral loads - Full scale tests and numerical modelling

  • Hocine Haouari;Ali Bouafia
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • In order to analyze the effect of the cyclic lateral loading on the response of a pile-soil system, a full-scale single steel pile was subjected to one-way cyclic loading. The test pile was driven into a bi-layered soil consisting of a normally consolidated saturated clay overlying a silty sandy layer, the site being submerged by water up to one meter above the mudline in order to reproduce the conditions of an offshore pile foundation. The aim of this paper is to present the main results of interpretation of the cyclic lateral tests in terms of pile deflections, bending moment, and cyclic P-Y curves. From these latter an absolute secant reaction modulus EAS,N was derived and a simple calculation model of the test single pile is proposed based on this modulus. Two applications of the proposed model are carried out, one with a 2D finite element modelling, and the second with a load transfer curves-based method.

Bearing capacity of micropiled-raft system

  • Hwang, Tae-Hyun;Kim, Kang-Hyun;Shin, Jong-Ho
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.417-428
    • /
    • 2017
  • The micropile has been mainly used under the concept of supplementing structural support or reinforcing soft ground. For the micropiled-raft system which uses a micropile and a raft in combination in particular, it is generally considered as ground reinforcement rather than foundation components considering the bearing capacity of the micropile in many cases. In this study, the bearing capacity mechanism of the micropiled-raft system is investigated through a physical model test and numerical method. The numerical results have shown that not only the slender-pile-effect of the micropile, but also the ground reinforcement effect, increase the bearing capacity considerably. The bearing capacity formula of the micropiled-raft system is derived based on the failure mechanism obtained through model tests. The formula is verified and proposed as a design chart.

Stability and Earth Pressure Distribution of Excavated Earth Retaining Wall by Centrifugal Model Tests (원심모형실험에 의한 굴착 흙막이벽의 안정 및 토압분포)

  • Kim, Y.C.;Lee, C.K.;Kim, H.J.;Ahn, K.K.;Lee, M.W.;Heo, Y.
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.139-146
    • /
    • 1997
  • In this study, centrifugal model tests were performed to investigate the behavior of excavated earth retaining wall with the depth of excavation and different types of wall(aluminum, steel panel). Jumunjin standard sand was used for foundation soil. The raining method was adopted to form the required relative density of the model ground. The lateral earth pressure measured from tests were compared with estimated active earth pressure by Rankine's theory. The test results have shown that the earth pressure acting on the retaining wall and the rotation displacement of the wall are influenced by the depth of excavation and the type of wall. It was found from the test results that the deformation of the wall increases with the depth of excavation.

  • PDF

Centrifuge Modeling and Numerical Analysis on Breakwater Construction (방파제 축조공사의 Centrifuge 모델링과 수치해석)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Yoon, Dae-Hee
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.81-90
    • /
    • 2011
  • Centrifuge modeling and numerical analysis on works of breakwater construction were performed to investigate the behavior of caisson type of breakwater and foundation treated with the method of DCM (Deep Cement Mixing) under the condition of wave action in field. In centrifuge modeling, construction sequence of breakwater caisson such as preparation of ground, treatment of DCM, installation of rubble mound, placement of breakwater caisson and lateral loading on the breakwater due to wave action were reconstructed. Lateral movement of model breakwater and ground reaction in the vertical direction were monitored during test. Stress concentration ratio between the untreated ground and the treated ground with DCM was evaluated from measurement of vertical stresses on each ground. Numerical analysis with the software of PLAXIS was carried to compare with Results of centrifuge model test. It was found that stability of model breakwater was maintained during stage of construction and the compared results about stress concentration ratio were in relatively good agreements.

  • PDF

Risk indicators related to periimplant disease: an observational retrospective cohort study

  • Poli, Pier Paolo;Beretta, Mario;Grossi, Giovanni Battista;Maiorana, Carlo
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.4
    • /
    • pp.266-276
    • /
    • 2016
  • Purpose: The aim of the present study was to retrospectively investigate the influence of potential risk indicators on the development of peri-implant disease. Methods: Overall, 103 patients referred for implant treatment from 2000 to 2012 were randomly enrolled. The study sample consisted of 421 conventional-length (>6 mm) non-turned titanium implants that were evaluated clinically and radiographically according to preestablished clinical and patient-related parameters by a single investigator. A non-parametric Mann-Whitney U test or Kruskal-Wallis rank test and a logistic regression model were used for the statistical analysis of the recorded data at the implant level. Results: The diagnosis of peri-implant mucositis and peri-implantitis was made for 173 (41.1%) and 19 (4.5%) implants, respectively. Age (${\geq}65$ years), patient adherence (professional hygiene recalls <2/year) and the presence of plaque were associated with higher peri-implant probing-depth values and bleeding-on-probing scores. The logistic regression analysis indicated that age (P=0.001), patient adherence (P=0.03), the absence of keratinized tissue (P=0.03), implants placed in pristine bone (P=0.04), and the presence of peri-implant soft-tissue recession (P=0.000) were strongly associated with the event of peri-implantitis. Conclusions: Within the limitations of this study, patients aged ${\geq}65$ years and non-adherent subjects were more prone to develop peri-implant disease. Therefore, early diagnosis and a systematic maintenance-care program are essential for maintaining peri-implant tissue health, especially in older patients.

A Study on the Face Image to Color of Make-up (색채 메이크업에 의한 얼굴이미지 연구)

  • Song, Mi-Young;Park, Oak-Reon;Ha, Jong-Kyung
    • Fashion & Textile Research Journal
    • /
    • v.7 no.5
    • /
    • pp.527-534
    • /
    • 2005
  • The purpose of this research is to study face images according to color of make-up was made by computer graphic simulation. The various facial images can be helpful for choosing suitable make-up color planning. In order to find out the differences of face images by make-up color, three different foundations and seven eye-shadows, six lips were applied on the round face model. Make-up Image Scale was used the scale of seven point modified the S-D method. Data were analyzed by Varimax perpendicular rotation method, Duncan's Multiple Range Test, Three-way ANOVA. As the result of make-up image perception analysis, a factor structure was divided into mildness, modernness, elegance, unique. The factor of mildness, modernness, unique affected on the foundation color. Foundation color was found out to be influential variable to distinguish color perception abilities. Also, the foundation, eye-shadow, lip color were influenced interactively on the perception of elegance factor. Pink color was important color, influenced on the mildness factor. Gray and purple color were influenced on the modernness factor. Mildness factor was perceived as the most bright foundation but unique factor was perceived as the most dark foundation. Then, the foundation, eye-shadow, lip color were influenced interactively on the perception of facial images. The results can be effectively applied to today's marketing and color design management which is focused on the product's emotional image in customer's mind.

The Behavior of In-situ Top Base foundation in Granular Soil (사질토에서 현장타설 팽이기초의 거동특성)

  • Kim, Hak-Moon;Kim, Chan-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.121-129
    • /
    • 2008
  • Numerical analysis for the in-situ top base foundation (In-situ TBF) was carried out in order to investigate the effect of bearing capacity and the load delivering mechanisms in granular soil. The input data for the numerical model was prepared from the result obtained from the plate load test and full size in-situ TBF field tests. According to the result of numerical analysis, the behavior of in-situ TBF showed that bearing capacity of the foundation increased by $50{\sim}100%$ and settlement was reduced up to $1/2{\sim}1/3$ comparing to other types foundation. The effect of cone-shaped part of the in-situ TBF was as important as pile part for the improvement of foundation stability. The variation of the length of pile part indicated that the present length was proved satisfactory in terms of effectiveness.

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

A Study on Model Test for Spilway of Fill Dam (Fill Dam의 방수로모형실험에 관한 고찰)

  • 강병익
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.4
    • /
    • pp.2090-2123
    • /
    • 1970
  • This paper is a report on the research of experimental model test of Andong Fill Dam, which has been planned by the Government of Korea as a project, of its over-flowing capacity in spillway, creation of minus pressure and structure of anti-water impulse in over-flow weir. Andong Fill Dam is one of the project of master development plant for water resources, locating at Nakdong River side of Korea, and is aimed to have a multi-purpose dam for flood-control, irrigation, water power, urban and industrial water supply. This dam is planned to erect in fill-dam type due to the improper soil foundation and condition for concrete dam. The refore for the proper and advantageous points, this is designed as center core fill dam. By a model minimized of Andong Fill Dam, held an experimental model test on water quentity of reservir, discharges of overflow part, low pressure and anti-water impulse of overflow part, which was conducted an experiment by flowing aspects through each section of spillway to find the changes of water pressure and that of water level, and corrected the section of each part in order to conduct a check on the creation of minus pressure not to be over acted to the allowable bundary of the section structure; and for the prevention of concentated scouring at the down stream side of flow.

  • PDF