• 제목/요약/키워드: Fouling materials

검색결과 109건 처리시간 0.023초

표면 처리를 통한 친환경 방오 기술 및 실해역 평가 연구 (Antifouling technology and sea trial verification according to surface treatment)

  • 한덕현;고혁준;정항철
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.425-432
    • /
    • 2022
  • Antifouling paints that inhibit the attachment and contamination of marine organisms mainly use TBT compounds, but because of their toxic components, they cause ecosystem disturbance and environmental destruction problems, so It is necessary to research eco-friendly antifouling paints that are easy to maintain and effective antifouling technologies. In this study, physical surface treatment of silane coating and chemical antifouling technology were applied to the metal surface to secure the stability of the surface of the marine structure and inhibit the attachment and growth of marine organisms. Adhesion of marine organisms was evaluated according to the coating conditions through surface evaluation of the charged material for 15 months in the waters of the west coast of Korea. In accordance with ASTM D6990-05, antifouling properties fouling rates (FR) and physical degradation rates(PDR) were evaluated through visual inspection of the evaluation specimens. As a result of evaluating the antifouling performance of the coated surface, it was confirmed that the antifouling performance was maintained at the 50% level even after 15 months in the sample subjected to physical processing and silane coating.

An overview of functionalised carbon nanomaterial for organic pollutant removal

  • Jun, Lau Yien;Mubarak, N.M.;Yee, Min Juey;Yon, Lau Sie;Bing, Chua Han;Khalid, Mohammad;Abdullah, E.C.
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.175-186
    • /
    • 2018
  • Carbon nanomaterials (CNMs), particularly carbon nanotube and graphene-based materials, are rapidly emerging as one of the most effective adsorbents for wastewater treatment. CNMs hold great potential as new generation adsorbents due to their high surface to volume ratio, as well as extraordinary chemical, mechanical and thermal stabilities. However, implementation of pristine CNMs in real world applications are still hindered due to their poor solubility in most solvents. Hence, surface modification of CNMs is essential for wastewater treatment application in order to improve its solubility, chemical stability, fouling resistance and efficiency. Numerous studies have reported the applications of functionalized CNMs as very promising adsorbents for treating organic and inorganic wastewater pollutants. In this paper, the removal of organic dye and phenol contaminants from wastewater using various type of functionalized CNMs are highlighted and summarized. Challenges and future opportunities for application of these CNMs as adsorbents in sustainable wastewater treatment are also addressed in this paper.

초음파를 이용한 침출수 처리를 위한 막분리 공정의 막힘현상 개선(II) : 막의 재질, 용질과 복합초음파의 효과 분석 (Improvement of Fouling in Membrane Separation Process for Leachate Treatment using Ultrasound(II) : Analysis of Membrane Materials, Solutes and Multi-ultrasonic Effect)

  • 김석완;임재림;이준걸
    • 대한환경공학회지
    • /
    • 제28권2호
    • /
    • pp.207-215
    • /
    • 2006
  • 본 연구에서는 화학적 1차 처리 침출수(시료 I)와 생물학적 처리 침출수(시료 II)를 대상으로 한 막 분리 공정에서 막의 막힘현상을 개선하기 위한 기술로서 초음파 조사방법을 도입하여 그에 대한 영향을 평가하였다. 초음파의 투과속도 개선효과에 관한 실험은 주기적으로 초음파를 조사할 수 있는 초음파막 분리장치를 제작하여 막의 재질(PS과 PVDF)과 막의 종류(MF와 UF), 초음파의 단일주파수(40 kHz와 120 kHz), 초음파의 세기(200 W와 400 W)에 따라 실시하였으며. 아울러 40 kHz와 120 kHz를 동시에 사용하는 복합초음파 조사 실험을 실시하였다. 주기적인 초음파 조사에 관한 시나리오 실험을 통해 UF막과 MF막을 비교한 결과 MF계열의 막에서 더 높은 투과속도의 개선효과를 나타냈으며, 두 가지 PS와 PVDF재질로 만들어진 MF막의 경우 PVDF재질의 MF막이 더 높은 개선효과를 지속적으로 나타내었다. 또한 용액(폐수)의 특성에 따라 초음파 조사에 의한 투과속도의 개선효과가 다르게 나타났으며, 두 가지 초음파주파수(40 kHz과 120 kHz)를 동시에 활용한 복합초음파를 주기적으로 조사한 경우에 투과속도의 상승률은 세정효과가 큰 낮은 주파수(40 kHz)의 단일초음파를 이용하는 경우보다 작았으나, 재막힘 현상은 복합초음파를 사용하는 경우가 더 크게 억제되어 막의 투과속도 개선효과가 지속적으로 유지되었다.

Corrosion and Materials Selection for Bitumen with Heavy Naphthenic Acid in Canadian Oil Sands

  • Eun, Thomas Jung-Chul
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.350-361
    • /
    • 2008
  • Canada's oil sands contain one of the largest reserves of oil in the world. According to recent estimates, there are nearly 180 billion barrels of oil in the Canadian oil sands trapped in a complex mixture of sand, water and clay. More than 40 companies have been currently operating or developing oil sands facilities since the first production in 1967. The process of oil sands upgrading is similar with down stream refinery, but the corrosion environment in upgrading refinery is often more severe than in the refinery because of high chlorides, mineral contents, carbonic acid, heavy viscosity and fouling, higher naphthenic acid [$NA-R(CH_{2})nCOOH$], and greater sulfur contents. Naphthenic acid corrosion (NAC) which is one of the most critical corrosion issues in up & downstream refinery plants was observed for the first time in 1920's in refinery distillation processes of Rumania, Azerbaizan (Baku), Venezuela, and California. As a first API report, the 11th annual meeting stated sources and mechanism of NAC in early 1930's. API has been developing the risk base standards, such as API RP580, 571, and Publication 581 which are based on the worst NAC damage in the world since 2000. Nevertheless not only the NAC phenomena and control in Canadian sands oil process are not much widely known but also there are still no engineering guidances for the Canadian sands oil in API standards. This paper will give NAC phenomina and materials selection guidance against NA environment in Canadian oil sands upgrading processes.

순환여과수조수의 대장균군 (NUMERICAL CHANGES OF THE COLIFORM BACTERIA IN A RECIRCULATING AQUARIUM)

  • 박수일
    • 한국수산과학회지
    • /
    • 제11권1호
    • /
    • pp.5-8
    • /
    • 1978
  • 순환여과수조에 있어 수질 오염의 지표로서 대장균군의 수적인 변동을 측정하였다. 세균의 오염은 주로 어류의 먹이와 배설물 그리고 새로 교환되는 사육수의 기오염도에 원인이 있었다. 수조내의 세균량은 수질의 물리화학적인 요인에 의해서 조절되었으며, 이러한 요인들 중에서는 pH가 주된 것이었다. 수온 $20^{\circ}C$에 pH가 $5\~6$ 이하로 낮아질 경우에는 세균의 급격한 번식은 없었다. 수온이 $30^{\circ}C$ 이상 일 때 세균의 성장은 pH에 관계없이 현저하게 감소하였으며, 세균군은 그 이하의 온도에서 활발히 성장하는 것처럼 보였다.

  • PDF

Direct membrane filtration of wastewater under very short hydraulic retention time

  • Yoon, Seong-Hoon
    • Advances in environmental research
    • /
    • 제7권1호
    • /
    • pp.39-52
    • /
    • 2018
  • Direct membrane filtration (DMF) of wastewater has many advantages over conventional biological wastewater treatment processes. DMF is not only compact, but potentially energy efficient due to the lack of biological aeration. It also produces more biosolids that can be used to produce methane gas through anaerobic digestion. Most of ammoniacal nitrogen in wastewater is preserved in effluent and is used as fertilizer when effluent is recycled for irrigation. In this study, a technical feasibility of DMF was explored. Organic and nitrogen removal efficiencies were compared between DMF and membrane bioreactor (MBR). Despite the extremely high F/V ratio, e.g., $14.4kg\;COD/m^3/d$, DMF provided very high COD removal efficiencies at ~93%. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) were less in DMF sludge, but membrane fouling rate was far greater than in MBR. The diversity of microbial community in DMF appeared very narrow based on the morphological observation using optical microscope. On the contrary, highly diverse microbial community was observed in the MBR. Microorganisms tended to form jelly globs and attach on reactor wall in DMF. FT-IR study revealed that the biological globs were structurally supported by feather-like materials made of secondary amines. Confocal laser scanning microscopy (CLSM) study showed microorganisms mainly resided on the external surface of microbial globs rather than the internal spaces.

이온빔을 이용한 표면 미세구조 제어를 통한 발수 표면 제조 (Fabrication of Hydrophobic Surface by Controlling Micro/Nano Structures Using Ion Beam Method)

  • 김동현;이동훈
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.123-128
    • /
    • 2018
  • The fabrication of a controlled surface is of great interest because it can be applied to various engineering facilities due to the various properties of the surface, such as self-cleaning, anti-bio-fouling, anti-icing, anti-corrosion, and anti-sticking. Controlled surfaces with micro/nano structures were fabricated using an ion beam focused onto a polypropylene (PP) surface with a fluoridation process. We developed a facile method of fabricating hydrophobic surfaces through ion beam treatment with argon and oxygen ions. The fabrication of low surface energy materials can replace the current expensive and complex manufacturing process. The contact angles (CAs) of the sample surface were $106^{\circ}$ and $108^{\circ}$ degrees using argon and oxygen ions, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy were used to determine the chemical composition of the surface. The morphology change of the surfaces was observed by scanning electron microscopy (SEM). The change of the surface morphology using the ion beam was shown to be very effective and provide enhanced optical properties. It is therefore expected that the prepared surface with wear and corrosion resistance might have a considerable potential in large scale industrial applications.

Surface modification of polymeric membranes for low protein binding

  • Higuchi, Akon;Tamai, Miho;Tagawa, Yoh-Ichi;Chang, Yung;Ling, Qing-Dong
    • Membrane and Water Treatment
    • /
    • 제1권2호
    • /
    • pp.103-120
    • /
    • 2010
  • Surface modification of microfiltration and ultrafiltration membranes has been widely used to improve the protein adsorption resistance and permeation properties of hydrophobic membranes. Several surface modification methods for converting conventional membranes into low-protein-binding membranes are reviewed. They are categorized as either physical modification or chemical modification of the membrane surface. Physical modification of the membrane surface can be achieved by coating it with hydrophilic polymers, hydrophilic-hydrophobic copolymers, surfactants or proteins. Another method of physical modification is plasma treatment with gases. A hydrophilic membrane surface can be also generated during phase-inverted micro-separation during membrane formation, by blending hydrophilic or hydrophilic-hydrophobic polymers with a hydrophobic base membrane polymer. The most widely used method of chemical modification is surface grafting of a hydrophilic polymer by UV polymerization because it is the easiest method; the membranes are dipped into monomers with and without photo-initiators, then irradiated with UV. Plasma-induced polymerization of hydrophilic monomers on the surface is another popular method, and surface chemical reactions have also been developed by several researchers. Several important examples of physical and chemical modifications of membrane surfaces for low-protein-binding are summarized in this article.

Surface hydrophilicity modification of PVDF membranes with an external electric field in the phase inversion process

  • Shi, Bao-Li;Su, Xing;He, Jing;Wang, Li-Li
    • Membrane and Water Treatment
    • /
    • 제6권5호
    • /
    • pp.351-363
    • /
    • 2015
  • To increase the surface hydrophilicity of PVDF membranes, in this paper, an electric enhancing method was adopted to treat PVDF nascent membranes during the phase inversion process. It was found that when PEG 600 was taken as the additive, the surface water contact angle of the PVDF membrane treated under 2 kV electric field was decreased from $84.0^{\circ}$ to $65.7^{\circ}$. The reason for the surface elements change of the PVDF membranes prepared under the electric field was analyzed in detail with the dielectric parameters of the polymer dope solutions. Results from BSA adsorption experiment showed that the antifouling ability of the external electric field-treated membranes was distinctly enhanced when compared with that of the untreated membranes. The amount of BSA adsorbed by the treated membranes was lower by 38-43%. Compared with the common chemical reaction methods to synthesize hydrophilic additives or membrane materials, the electric field-assisted processing method did not involve any additional chemical synthesis process and it was capable of realizing better hydrophilicity.

진동막분리장치에 의한 반도체폐수처리와 재이용에 관한 연구 (A Study on the Semiconductor Wastewater Treatment and Recycling by VSEP system)

  • 강경환
    • 한국환경과학회지
    • /
    • 제14권3호
    • /
    • pp.335-343
    • /
    • 2005
  • The objective of this research is to evaluate a feasibility of wastewater reuse by membrane treatment with vibrating membrane separation equipment. Molecular weight of compounds in wastewater, permeability of membrane and retentate characterization after membrane filtration were investigated in order to determine appropriate membrane pore size and materials for wastewater treatment. Selected membrane was evaluated with vibration membrane separation equipment to optimize operating conditions. The following conclusion are drawn. 1. We got as following test results after the distribution of particles in the semiconductor wastewater, are made up of $1\~20{\mu}m$. Si, gold and Al in turn are contained in semiconductor wastewater. 2. Recovery rate is changeless under increasing recovery rate in operation. Though a value can be if pressure can be changed, the highest value of permeate rate is presented in 150 psi. 3. The AS-100(polysulpone) was selected as the most appropriate membranes for the treatment of semi-conductor wastewater to VSEP system. The fouling almost did not occur during this experiments. The analyses of treated water with VSEP system showed conductivity: 0.059,us/cm, TDS: 40mg/l, COD: 20mg/l, SS : 5mg/l, n-Hexane: 8.3mg/l. Comparing previous systems, operating expenses is decreased by more $50\%$.