• Title/Summary/Keyword: Fos-protein

Search Result 203, Processing Time 0.024 seconds

Diphlorethohydroxycarmalol Suppresses Ultraviolet B-Induced Matrix Metalloproteinases via Inhibition of JNK and ERK Signaling in Human Keratinocytes

  • Piao, Mei Jing;Kumara, Madduma Hewage Susara Ruwan;Kim, Ki Cheon;Kang, Kyoung Ah;Kang, Hee Kyoung;Lee, Nam Ho;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.557-563
    • /
    • 2015
  • Skin aging is the most readily observable process involved in human aging. Ultraviolet B (UVB) radiation causes photo-oxidation via generation of reactive oxygen species (ROS), thereby damaging the nucleus and cytoplasm of skin cells and ultimately leading to cell death. Recent studies have shown that high levels of solar UVB irradiation induce the synthesis of matrix metalloproteinases (MMPs) in skin fibroblasts, causing photo-aging and tumor progression. The MMP family is involved in the breakdown of extracellular matrix in normal physiological processes such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes such as arthritis and metastasis. We investigated the effect of diphlorethohydroxycarmalol (DPHC) against damage induced by UVB radiation in human skin keratinocytes. In UVB-irradiated cells, DPHC significantly reduced expression of MMP mRNA and protein, as well as activation of MMPs. Furthermore, DPHC reduced phosphorylation of ERK and JNK, which act upstream of c-Fos and c-Jun, respectively; consequently, DPHC inhibited the expression of c-Fos and c-Jun, which are key components of activator protein-1 (AP-1, up-regulator of MMPs). Additionally, DPHC abolished the DNA-binding activity of AP-1, and thereby prevented AP-1-mediated transcriptional activation. These data demonstrate that by inactivating ERK and JNK, DPHC inhibits induction of MMPs triggered by UVB radiation.

TNF-induced genes and Proteins

  • 이태호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.11a
    • /
    • pp.17-20
    • /
    • 1993
  • As a step toward a more complete understanding of the molecular actions of TNF, we prepared a cDNA library from TNF-treated human FS-4 fibroblasts and used differential hybridization to identify cDNA clones corresponding to mRNAs enriched in TNF-treated eells. In Quiescent FS-4 cells n induces an increase in the level of some mRNAs within 20 to 30 min. Some of these immediate-early response mRNAs are elevated only transiently for about 30 to 120 min, e. g., c-fos and c-myc (Lin and Vilcek,1987) or the transcription factor IRF-1 (Fujita et al.1989). Such immediate-early gene products may be important for the activation of other genes, but their transient induction suggests that they are not the actual effector molecules responsible for the phenotypic changes induced by TNF. We chose a 3-h incubation with W because we were seeking cDNAs corresponding to messages that are more stably elevated after TNF treatment. Indeed, the results shown in Figure 8 and 9 indicate that all of the mRNAs corresponding to the eight TSG cDNAs isolated remained significantly elevated after 16h of continuous treatment with TNF, and their kinetics of induction were clearly different from those of the immediate-early response mRNAs such as c-fos, c-myc or IRF-1. Nevertheless, only the induction of TSG-21 (collagenase) and TSG-27 (stromelysin) nNAs was completely inhibited by cycloheximide and the induction of TSG-37 (metallothionein-II) was reduced in the presence of this inhibitor of protein synthesis. Induction of the other five TSG mRNAs by TNF was completelyresistant to cycloheximide, suggest ins that no protein intermediate is needed for the upregulation of these mRNAs.

  • PDF

Aster saponin A2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway

  • Su, Xiang-Dong;Yang, Seo Y;Shrestha, Saroj K;Soh, Yunjo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.47.1-47.11
    • /
    • 2022
  • Background: In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives: This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods: The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results: In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion: AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget's disease, and osteogenesis imperfecta.

Effect of Co-administration of Aconiti Lateralis Preparata Radix and Cinnamomi Cortex on Osteoclast Differentiation (부자와 육계 병용투여 시 파골세포 분화 억제에 미치는 영향)

  • Jung, Gi-Eun;Kim, Jung Young;Kim, Ji-Hoon;Han, Sang-Yong;Kim, Yun-Kyung
    • The Korea Journal of Herbology
    • /
    • v.29 no.2
    • /
    • pp.61-67
    • /
    • 2014
  • Objectives : Aconiti Lateralis Preparata Radix (Aconitum Carmichaeli, AC) and Cinnamomi Cortex (Cinnamomi Cortex, CC) have been treated to elderly for kidney yang enhancement in Korean traditional medicine. In this study, the effects of water extract of AC and CC on RANKL (Receptor Activator for Nuclear Factor ${\kappa}B$ Ligand)-induced osteoclast differentiation were evaluated in culture system. Methods : MTT assay was used to evaluate the potential cytotoxicity of AC and CC extracts in bone macrophage marrows (BMMs) stimulated with M-CSF. TRAP (tartrate-resistant acid phosphatase) staining and TRAP activity were performed to know the inhibitory effect on osteoclast differentiation. The protein expression levels of nuclear factors such as activated T cell(NFAT)c1, c-Fos, MAPKs and ${\beta}$-actin in cell lysates treated with AC and CC extracts were analysed by western blotting. Results : AC, CC extracts and their co-administration inhibited significantly RANKL-induced osteoclast differentiation in BMMs in a dose dependent manner without toxicity. Each AC and CC extracts inhibited the phosphorylation of p38. Also, AC and CC extracts, respectively, inhibited the protein expression of c-Fos and NFATc1 more than Co-administration of AC and CC even if all treatments did. It was observed that RANKL-induced degradation of I-${\kappa}B$ is significantly suppressed by all treatments. Conclusions : Taken together, It was concluded that AC and CC have beneficial effect on osteoporosis by inhibition of osteoclast differentiation. Thus, Atractylodis AC and CC could be a treatment option for osteoporosis.

Effects of Fermented Achyranthes japonica Nakai, Angelica gigas Nakai, and Eucommia ulmoides Oliver Extracts on Regulation of Apoptosis in Articular Chondrocytes (Primary Chondrocytes에서 발효우슬, 당귀, 두충 복합물의 세포사멸 조절 효과)

  • Dakyung Kim;Wonhee Jo;Minhee Lee;Hyun Cheol Jeong;Sung-Jin Lee;Seunghun Lee;Jeongmin Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.7-14
    • /
    • 2023
  • The effects of fermented Achyranthes japonica Nakai, Angelica gigas Nakai, and Eucommia ulmoides Oliver extracts (FAAE) on regulation of inflammation and apoptosis were investigated in primary cultured rat cartilage cells. To identify the protective effects of FAAE against H2O2, cell survival was measured by MTT assay. Smad3, Collagen type I, MMP3, and MMP13 were measured by real-timpe PCR and westernbot and the inflammatory (NF-κB pathway, COX-2, iNOS) factors were determined by western blot. The apoptosis related factors (JNK, c-Fos, c-Jun, caspase 3, Bax, and Bcl-2) were determined by western blot. FAAE significantly increased the follwing: H2O2 treated cell survival, mRNA and protein expression of Smad 3, collagen type I. In addition, FAAE significantly decreased the protein expression of inflammatory and apoptosis related factors. This study suggests that FAAE have a protection effect of chondrocytes through inhibition of inflammation and apoptosis. Thus, FAAE is a therapeutic potential food componet in osteoarthritis.

Leonurus sibiricus L. ethanol extract promotes osteoblast differentiation and inhibits osteoclast formation

  • Jae‑Hyun Kim;Minsun Kim;Hyuk‑Sang Jung;Youngjoo Sohn
    • International Journal of Molecular Medicine
    • /
    • v.44 no.3
    • /
    • pp.913-926
    • /
    • 2019
  • Leonurus sibiricus L. (LS) is a medicinal plant used in East Asia, Europe and the USA. LS is primarily used in the treatment of gynecological diseases, and recent studies have demonstrated that it exerts anti-inflammatory and antioxidant effects. To the best of our knowledge, the present study demonstrated for the first time that LS may promote osteoblast differentiation and suppress osteoclast differentiation in vitro, and that it inhibited lipopolysaccharide (LPS)-induced bone loss in a mouse model. LS was observed to promote the osteoblast differentiation of MC3T3-E1 cells and upregulate the expression of runt-related transcription factor 2 (RUNX2), a key gene involved in osteoblast differentiation. This resulted in the induction of the expression of various osteogenic genes, including alkaline phosphatase (ALP), osteonectin (OSN), osteopontin (OPN), type I collagen (COL1) and bone sialoprotein (BSP). LS was also observed to inhibit osteoclast differentiation and bone resorption. The expression levels of nuclear factor of activated T-cells 1 (NFATc1) and c-Fos were inhibited following LS treatment. NFATc1 and c-Fos are key markers of osteoclast differentiation that inhibit receptor activator of nuclear factor-κB ligand (RANKL)-induced mitogen-activated protein kinase (MAPKs) and nuclear factor (NF)-κB. As a result, LS suppressed the expression of osteoclast-associated genes, such as matrix metallopeptidase-9 (MMP-9), cathepsin K (Ctsk), tartrate-resistant acid phosphatase (TRAP), osteoclast-associated immunoglobulin-like receptor (OSCAR), c-src, c-myc, osteoclast stimulatory transmembrane protein (OC-STAMP) and ATPase H+ transporting V0 subunit d2 (ATP6v0d2). Consistent with the in vitro results, LS inhibited the reduction in bone mineral density and the bone volume/total volume ratio in a mouse model of LPS-induced osteoporosis. These results suggest that LS may be a valuable agent for the treatment of osteoporosis and additional bone metabolic diseases.

Afzelin suppresses proinflammatory responses in particulate matter-exposed human keratinocytes

  • Ju Hee Kim;Minjeong Kim;Jae Min Kim;Mi‑Kyung Lee;Seong Jun Seo;Kui Young Park
    • International Journal of Molecular Medicine
    • /
    • v.43 no.6
    • /
    • pp.2516-2522
    • /
    • 2019
  • Particulate matter (PM), a widespread airborne contaminant, is a complex mixture of solid and liquid particles suspended in the air. Recent studies have demonstrated that PM induces oxidative stress and inflammatory reactions, and may cause certain skin diseases. Afzelin is a flavonoid isolated from Thesium chinense Turcz, which has anti-inflammatory, anticancer and antibacterial properties. Therefore, the present study aimed to investigate if afzelin affected inflammatory responses in human keratinocytes exposed to PM. HaCaT cells were treated with PM (25 ㎍/cm2) in the presence or absence of afzelin (200 µM). Here, standard reference material 1649b was used as PM. Cell viability was assessed using the water-soluble tetrazolium salt-1 assay. The generation of reactive oxygen species (ROS) was measured using the dichloro-dihydro-​fluorescein diacetate assay. Gene and protein expression were investigated using reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Levels of secreted inflammatory cytokines were measured using ELISA. The results suggested that afzelin inhibited PM-induced proinflammatory cytokine mRNA expression and protein secretion in HaCaT cells. In addition, afzelin suppressed PM-induced intracellular ROS generation, and p38 mitogen-activated protein kinase and transcription factor activator protein-1 component c-Fos and c-Jun activation. The results indicated that afzelin exerts anti-inflammatory and antioxidant effects in PM-exposed HaCaT. Afzelin may have potential for preventing PM-induced inflammatory skin diseases.

The cancer/testis antigen CAGE induces MMP-2 through the activation of NF-κB and AP-1

  • Kim, Young-Mi;Jeoung, Doo-Il
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.758-763
    • /
    • 2009
  • Cancer-associated antigen (CAGE) induces the expression of matrix metalloproteinase-2 (MMP-2) by activating Akt, which in turn interacts with inhibitory kappa kinase $\beta$ ($I{\kappa}K{\beta}$) to activate nuclear factor ${\kappa}B$ (NF-${\kappa}B$). Akt and p38 mitogen activated protein kinase (p38 MAPK) are necessary for CAGE-mediated induction of the AP-1 subunit JunB, whereas extracellular regulated kinase (ERK) is necessary for the induction of fos-related antigen-1 (Fra-1). Induction of MMP-2 by CAGE requires activator of protein-1 (AP-1) to be bound. Specific binding of JunB to MMP-2 promoter sequences was shown by chromatin immunoprecipitation (ChIP) analysis.

The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression

  • Choi, Won Jun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma ($HP1{\gamma}$) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates $HP1{\gamma}$, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-$3{\varepsilon}$. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.

Inhibitory Effects of Water Extracts of Eucommiae Cortex and Psoraleae Semen Alone and in Combination on Osteoclast Differentiation and Bone

  • Park, Jin Soo;Park, Ga Young;Choi, Han Gyul;Kim, Seong Joung;Kim, June Hyun;park, Min Cheol;Kim, Yun Kyung;Han, Sang Yong;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.34 no.2
    • /
    • pp.1-18
    • /
    • 2017
  • Objectives : The purpose of this study was to evaluate the effects of water extracts of Eucommiae cortex (EC), Psoraleae semen (PS), and their combination on receptor activator of nuclear factor-kappa-B ligand (RANKL)-induced osteoclast differentiation. Methods : We assayed the protein expression levels of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), c-Fos, mitogen-activated protein kinases (MAPKs), and ${\beta}-actin$ in cell lysates using western blotting. Similarly, mRNA expression levels of NFATc1, c-Fos, tartrateresistant acid phosphate (TRAP), and glyceraldehyde-3-phosphate dehydrogenase, spermatogeni (GAPDHS) from bone marrow macrophages (BMMs) were analyzed using reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, we determined the anti-osteoporotic effects of the water extracts of EC, PS, and their combination in a lipopolysaccharide (LPS)-induced bone-loss mouse model. Results : The in vitro data revealed showed that the combination of EC and PS extract showed a more remarkable inhibition of osteoclast differentiation than each herb did alone. The combination downregulated the induction of c-Fos, NFATc1, and TRAP by suppressing the phosphorylation of p38 and c-Jun N-terminal kinases (JNKs) and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). Lastly, the in vivo data showed that PS reduced the LPS-induced bone erosion. Conclusion : The result of this study suggests that EC and PS could be potential therapeutic agents for bone loss diseases such as osteoporosis.