• 제목/요약/키워드: Fos expression

검색결과 396건 처리시간 0.023초

Inhibitory Effects of Panduratin A on Periodontitis-Induced Inflammation and Osteoclastogenesis through Inhibition of MAPK Pathways In Vitro

  • Kim, Haebom;Kim, Mi-Bo;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.190-198
    • /
    • 2018
  • Periodontitis is an inflammatory disease caused by microbial lipopolysaccharide (LPS), destroying gingival tissues and alveolar bone in the periodontium. In the present study, we evaluated the anti-inflammatory and anti-osteoclastic effects of panduratin A, a chalcone compound isolated from Boesenbergia pandurata, in human gingival fibroblast-1 (HGF-1) and RAW 264.7 cells. Treatment of panduratin A to LPS-stimulated HGF-1 significantly reduced the expression of interleukin-$1{\beta}$ and nuclear factor-kappa B (NF-${\kappa}B$), subsequently leading to the inhibition of matrix metalloproteinase-2 (MMP-2) and MMP-8 compared with that in the LPS control ($^{**}p$ < 0.01). These anti-inflammatory responses were mediated by suppressing the mitogen-activated protein kinase (MAPK) signaling and activator protein-1 complex formation pathways. Moreover, receptor activator of NF-${\kappa}B$ ligand (RANKL)-stimulated RAW 264.7 cells treated with panduratin A showed significant inhibition of osteoclastic transcription factors such as nuclear factor of activated T-cells c1 and c-Fos as well as osteoclastic enzymes such as tartrate-resistant acid phosphatase and cathepsin K compared with those in the RANKL control ($^{**}p$ < 0.01). Similar to HGF-1, panduratin A suppressed osteoclastogenesis by controlling MAPK signaling pathways. Taken together, these results suggest that panduratin A could be a potential candidate for development as a natural anti-periodontitis agent.

Suppression of Inflammation, Osteoclastogenesis and Bone Loss by PZRAS Extract

  • Li, Liang;Park, Young-Ran;Shrestha, Saroj Kumar;Cho, Hyoung-Kwon;Soh, Yunjo
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1543-1551
    • /
    • 2020
  • Panax ginseng has a wide range of activities including a neuroprotective effect, skin protective effects, enhanced DNA repairing, anti-diabetic activity, and protective effects against vascular inflammation. In the present study, we sought to discover the inhibitory effects of a mixture of natural products containing Panax ginseng, Ziziphus jujube, Rubi fructus, Artemisiae asiaticae and Scutellaria baicalensis (PZRAS) on osteoclastogenesis and bone remodeling, as neither the effects of a mixture containing Panax ginseng extract, nor its molecular mechanism on bone inflammation, have been clarified yet. PZRAS upregulated the levels of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSH-R) and glutathione peroxidase (GSH-Px) and reduced malondialdehyde (MDA) in LPS-treated RAW264.7 cells. Moreover, treatment with PZRAS decreased the production of IL-1β and TNF-α. PZRAS also inhibited osteoclast differentiation through inhibiting osteoclastspecific genes like MMP-2, 9, cathepsin K, and TRAP in RANKL-treated RAW264.7 cells. Additionally, PZRAS has inhibitory functions on the RANKL-stimulated activation of ERK and JNK, which lead to a decrease in the expression of NFATc1 and c-Fos. In an in vivo study, bone resorption induced by LPS was recovered by treatment with PZRAS in bone volume per tissue volume (BV/TV) compared to control. Furthermore, the ratio of eroded bone surface of femurs was significantly increased in LPS-treated mice compared to vehicle group, but this ratio was significantly reversed in PZRAS-treated mice. These results suggest that PZRAS could prevent or treat disorders with abnormal bone loss.

Stimulation of Cell Growth by Erythropoietin in RAW264.7 Cells: Association with AP-1 Activation

  • Seong Seu-Run;Lee Jae-Woong;Lee Yong-Kyoung;Kim Tae-Il;Son Dong-Ju;Moon Dong-Cheol;Yun Young-Won;Yoon Do-Young;Hong Jin-Tae
    • Archives of Pharmacal Research
    • /
    • 제29권3호
    • /
    • pp.218-223
    • /
    • 2006
  • Erythropoietin (EPO), a hematopoietic factor, is required for normal erythrocyte developments, but it has been demonstrated to have many other functions, and its receptor is localized in other tissues. In the present study, we investigated whether EPO can promote other cell proliferation and possible molecular mechanisms. EPO restored the inhibition of the RAW264.7 and PC12 cell growth by fetal bovine serum (FBS) withdrawal in a dose dependent manner, but not that of other cell types tested. The restoring effect of EPO was completed when the RAW264.7 cells were cultured in the medium containing as low as 3% of FBS, and 10 U/mL EPO could replace FBS. The restoring effect of EPO in the RAW264.7 cells was associated with the increased of c-Fos and c-Jun expression as well as AP-1 activation. These data demonstrate that EPO can stimulate RAW264. 7 cell as well as PC12 cell growth even when the cells were cultured without FBS or in the presence of small amounts of FBS in the medium, and this stimulating effect is associated with the activation of AP-1 transcription factor.

Analysis of MAPK Signaling Pathway Genes in the Intestinal Mucosal Layer of Necrotic Eenteritis-Afflicted Two Inbred Chicken Lines

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Lillehoj, Hyun S.;Hong, Yeong Ho
    • 한국가금학회지
    • /
    • 제44권3호
    • /
    • pp.199-209
    • /
    • 2017
  • Mitogen-activated protein kinase (MAPK) signaling pathways play a key role in innate immunity, inflammation, cell proliferation, cell differentiation, and cell death. The main objective of this study was to investigate the expression level of candidate MAPK pathway genes in the intestinal mucosal layer of two genetically disparate chicken lines (Marek's disease-resistant line 6.3 and Marek's disease-susceptible line 7.2) induced with necrotic enteritis (NE). Using high-throughput RNA sequencing, we investigated 178 MAPK signaling pathway related genes that were significantly and differentially expressed between the intestinal mucosal layers of the NE-afflicted and control chickens. In total, 15 MAPK pathway genes were further measured by quantitative real-time PCR(qRT-PCR) and the results were consistent with the RNA-sequencing data. All 178 identified genes were annotated through Gene Ontology and mapped onto the KEGG chicken MAPK signaling pathway. Several key genes of the MAPK pathway, ERK1/2, JNK1-3, p38 MAPK, MAP2K1-4, $NF-{\kappa}B1/2$, c-Fos, AP-1, Jun-D, and Jun, were differentially expressed in the two chicken lines. Therefore, we believe that RNA sequencing and qRT-PCR analysis provide resourceful information for future studies on MAPK signaling of genetically disparate chicken lines in response to pathogens.

두충의 물 추출물이 파골세포의 분화에 미치는 영향 (Effect of Water Extract of Eucommiae cortex In RANKL-induced Osteoclast Differentiation)

  • 정연태;최윤홍;송정훈;이창훈;이명수;장성조;조해중;곽한복;오재민
    • 동의생리병리학회지
    • /
    • 제23권3호
    • /
    • pp.613-618
    • /
    • 2009
  • Although the effect of Eucommie umoides oliver in osteoporosis has been studied, direct action of Eucommis ulmoides Oliver on osteoclasts remains unknown. Here we examined whether Eucommiae cortex inhibits osteoclast differentiation and bone resorption, a process known to be involved in bone diseases such as osteoporosis. Water extract from Eucommiae cortex (WE-EC) inhibited differentiation of bone marrow macrophages (BMMs) into osteoclasts without causing cytotoxicity. WE-EC suppressed the phosphorylation of p38, ERK, and JNK in BMMs treated with RANKL. WE EC specifically suppressed the mRNA expression of NFATc1 induced by RANKL. However, WE-EC inhibited stability of c-Fos protein induced by RANKL. Furthermore, WE-EC inhibited osteoclast survival induced by RANKL and in turn suppressed bone resorption. Taken together, our results suggest that WE-EC may be better agents for therapeutic use in bone diseases.

Poncirin Inhibits Osteoclast Differentiation and Bone Loss through Down-Regulation of NFATc1 In Vitro and In Vivo

  • Chun, Kwang-Hoon;Jin, Hyun Chul;Kang, Ki Sung;Chang, Tong-Shin;Hwang, Gwi Seo
    • Biomolecules & Therapeutics
    • /
    • 제28권4호
    • /
    • pp.337-343
    • /
    • 2020
  • Activation of osteoclast and inactivation of osteoblast result in loss of bone mass with bone resorption, leading to the pathological progression of osteoporosis. The receptor activator of NF-κB ligand (RANKL) is a member of the TNF superfamily, and is a key mediator of osteoclast differentiation. A flavanone glycoside isolated from the fruit of Poncirus trifoliata, poncirin has anti-allergic, hypocholesterolemic, anti-inflammatory and anti-platelet activities. The present study investigates the effect of poncirin on osteoclast differentiation of RANKL-stimulated RAW264.7 cells. We observed reduced formation of RANKL-stimulated TRAP-positive multinucleated cells (a morphological feature of osteoclasts) after poncirin exposure. Real-time qPCR analysis showed suppression of the RANKL-mediated induction of key osteoclastogenic molecules such as NFATc1, TRAP, c-Fos, MMP9 and cathepsin K after poncirin treatment. Poncirin also inhibited the RANKL-mediated activation of NF-κB and, notably, JNK, without changes in ERK and p38 expression in RAW264.7 cells. Furthermore, we assessed the in vivo efficacy of poncirin in the lipopolysaccharide (LPS)-induced bone erosion model. Evaluating the micro-CT of femurs revealed that bone erosion in poncirin treated mice was markedly attenuated. Our results indicate that poncirin exerts anti-osteoclastic effects in vitro and in vivo by suppressing osteoclast differentiation. We believe that poncirin is a promising candidate for inflammatory bone loss therapeutics.

The antinociceptive and anti-inflammatory effect of water-soluble fraction of bee venom on rheumatoid arthritis in rats

  • Lee, Jang-Hern;Kwon, Young-Bae;Lee, Jae-Dong;Kang, Sung-Keel;Lee, Hye-Jung
    • 대한약침학회지
    • /
    • 제4권1호
    • /
    • pp.65-84
    • /
    • 2001
  • We recently demonstrated that bee venom (BV) injection into acupoint (i.e. Zusanli) produced more potent anti-inflammatory and antinociciptive effect in Freunds adjuvant induced rheumatoid arthritis (RA) model as compared with that of non-acupoint injection(i.e back). However, the precise components underlying BV-induced antinociceptive and/or anti-inflammatory effects have not been fully understood. Therefore, we further investigated the anti-arthritic effect of BV after extracting the whole BV according to solubility (water soluble: BVA, ethylacetate soluble: BVE). Subcutaneous BVA treatment (0.9 mg/kg/day) into Zusanli acupoint was found to dramatically inhibit paw edema and radiological change (i.e. new bone proliferation and soft tissue swelling) caused by Freunds adjuvant injection. In addition, the increase of serum interleukin-6 by RA induction was normalized by the BVA treatment as similar with that of non-arthritic animals. On the other hand, BVA therapy significantly reduced arthritis induced nociceptive behaviors (i.e., nociceptive score for mechanical hyperalgesia and thermal hyperalgesia). Furthermore, BVA treatment significantly suppressed adjuvant induced Fos expression in the lumbar spinal cord at 3 weeks post-adjuvant injection. However, BVE treatment (0.05 mg/kg/day) has not any anti-inflammatory and anti-nociceptive effect on RA. Based on the present results, we demonstrated that BVA might be a effective fraction in whole BV for long-term treatment of RA-induced pain and inflammation. However, it is clear necessary that further fraction study about BVA was required for elucidating an effective component of BVA.

Identification of the Marker-Genes for Dioxin(2, 3, 7, 8- tetradibenzo-p-dioxin)-Induced Immune Dysfunction by Using the High-Density Oligonucleotide Microarray

  • Kim, Jeong-Ah;Lee, Eun-Ju;Chung, In Hye;Kim, Hyung-Lae
    • Genomics & Informatics
    • /
    • 제2권2호
    • /
    • pp.75-80
    • /
    • 2004
  • In a variety of animal species, the perinatal exposure of experimental animals to the 2,3,7,8-tetrachlorodibenzo­p-dioxin (TCDD) leads to the immune dysfunction, which is more severe and persistent than that caused by adult exposure. We report here the changes of gene expression and the identification of the marker-genes representing the dioxin exposure. The expressions of the transcripts were analyzed using the 11 K oligonucleotide­microarray from the bone marrow cells of male C57BL/6J mice after an intraperitoneal injection of $1{\mu}g$ TCDD/kg body weight at various time intervals: gestational 6.5 day(G6.5), 13.5 day(G13.5), 18.5 day(G18.5), and postnatal 3 (P3W)and 6 week (P6W). The type of self-organizing maps(SOM) representing the specific exposure dioxin could be identified as follows; G6.5D(C14), G13.5D(C0, C5, C10, C18), G18.5D(7): P3W(C2, C21), and P6W(C4, C15, C20). The candidate marker-genes were restricted to the transcripts, which could be consistently expressed greater than $\pm$2-fold in three experiments. The resulting candidates were 85 genes, the characteristics of that were involved in cell physiology and cell functions such as cell proliferation and immune function. We identified the biomarker-genes for dioxin exposure: smc -like 2 from SOM C14 for the dioxin exposure at G6.5D, focal adhesion kinase and 6 other genes from C0, and protein tyrosine phosphatase 4a2 and 3 other genes from C5 for G13.5D, platelet factor 4 from C7 for G18.5D, fos from C2 for P3W.

천연물 지표성분들의 세포독성 및 AP-1 활성 평가를 통한 암예방 기능성 탐색 (Screening of Natural Compounds for Cancer Prevention by Cytotoxicities and AP-1 Reporter Gene Activities)

  • 최부영;조석철
    • 융합정보논문지
    • /
    • 제7권6호
    • /
    • pp.89-95
    • /
    • 2017
  • 암을 유발하는 PMA는 세포를 자극하여 전사인자 C-Jun/C-fos의 발현을 증가시키며 핵 내의 AP-1의 활성을 증가하게 되고 결과적으로 각종 암이 발생된다고 보고되고 있다. 본 연구에서는 천연물 지표성분의 안전성을 보기위한 세포독성과 암예방 효과를 예측할 수 있는 Activator protein(AP-1) 활성억제를 관찰하였다. 천연물 지표성분 38종을 대상으로 세포독성과 AP-1 활성억제를 관찰한 결과 섬수의 지표성분인 Bufogein 과 Cinobufagin에서는 세포독성을 보이며 AP-1 활성 억제와 비교 시 5배 정도 차이를 보임을 알 수가 있다. 반면에 Arctigenin, Manassantin A, B에서는 AP-1 활성 억제 농도는 $2{\mu}M$ 이하이면서 세포독성과의 비율은 15배 이상임을 알 수 있다. 본 실험의 결과를 통해 우방자와 삼백초의 지표성분인 Arctigenin, Manassantin A,B는 암 예방 연구의 가능성을 시사하였다.

역전사 중합효소 연쇄반응을 이용한 표면 적심성에 따른 골수유래 줄기세포의 생물학적 평가 (Biological Evaluation of Bone Marrow-Derived Stem Cells onto Different Wettability by RT-PCR)

  • 김은정;박종수;김문석;조선행;이종문;이해방;강길선
    • 폴리머
    • /
    • 제28권3호
    • /
    • pp.218-224
    • /
    • 2004
  • 고분자 생체재료에서 세포부착과 성장은 재료의 적심성, 화학구조, 표면전하 및 거칠기 등의 표면 성질에 의존한다. 본 연구에서는 저밀도 폴리에틸렌 필름 (LDPE)의 표면 적심성과 골수유래 줄기세포의 증식 및 성장성을 측정하기 위하여 플라즈마 처리를 실시하였으며 개질된 필름 표면의 특성을 조사하였다. 또한 LDPE 필름에서의 세포부착과 증식률은 세포수 관찰과 역전사 중합효소 연쇄반응으로 확인하였다. 표면성질의 하나인 물 접촉각 측정 결과 플라즈마 처리 시간이 길어짐에 따라 필름표면의 접촉각이 감소하였으며 암형성 유전자와 암억제 유전자의 발현률이 60∼70$^{\circ}$ 사이에서 높음을 확인할 수 있었다. 또한 세포수 관찰을 통해 접촉각이 60∼70$^{\circ}$인 표면에서 세포 증식률이 우수하여 표면성질이 세포의 성장과 분화에 중요함을 확인하였다.