• Title/Summary/Keyword: Forward osmosis (FO)

Search Result 49, Processing Time 0.022 seconds

Development of Graphene Nanocomposite Membrane Using Layer-by-layer Technique for Desalination (다층박막적층법을 이용한 담수화용 그래핀 나노복합체 분리막 개발)

  • Yu, Hye-Weon;Song, Jun-Ho;Kim, Chang-Min;Yang, Euntae;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.75-82
    • /
    • 2018
  • Forward osmosis (FO) desalination system has been highlighted to improve the energy efficiency and drive down the carbon footprint of current reverse osmosis (RO) desalination technology. To improve the trade-off between water flux and salt rejection of thin film composite (TFC) desalination membrane, thin film nanocomposite membranes (TFN), in which nanomaterials as a filler are embeded within a polymeric matrix, are being explored to tailor the separation performance and add new functionality to membranes for water purification applications. The objective of this article is to develop a graphene nanocomposite membrane with high performance of water selective permeability (high water flux, high salt rejection, and low reverse solute diffusion) as a next-generation FO desalination membrane. For advances in fabrication of graphene oxide (GO) membranes, layer-by-layer (LBL) technique was used to control the desirable structure, alignment, and chemical functionality that can lead to ultrahigh-permeability membranes due to highly selective transport of water molecules. In this study, the GO nanocomposite membrane fabricated by LBL dip coating method showed high water flux ($J_w/{\Delta}{\pi}=2.51LMH/bar$), water selectivity ($J_w/J_s=8.3L/g$), and salt rejection (99.5%) as well as high stability in aqueous solution and under FO operation condition.

Bibliometric analysis of twenty-year research trend in desalination technologies during 2000-2020 (계량서지적 분석을 활용한 핵심 담수화 기술의 연구 동향)

  • Lee, Gyeonghun;Kim, Hye-Won;Boo, Chanhee;Beak, Youngbin;Kwak, Rhokyun;Kim, Choonsoo;Jeong, Seongpil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2021
  • The global water shortage is getting more attention by global climate change. And water demand rapidly increases due to industrialization and population growth. Desalination technology is being expected as an alternative water supply method. Desalination technology requires low energy or maintenance costs, making it a competible next generation technology, with examples such as forward osmosis (FO), membrane distillation (MD), capacitive deionization (CDI), and electrodialysis (ED) to compete with reverse osmosis (RO). In order to identify recent research trends in desalination technologies (FO, MD, RO, CDI, and ED) between 2000-2020, a bibliometric analysis was conducted in the current study. The number of published papers in desalination technology have increased in Desalination and Journal of Membrane Science mainly. Moreover, it was found that FO, MD, RO, CDI, and ED technologies have been applied in various research areas including electrochemical, food processing and carbon-based material synthesis. Recent research topics according to the desalination technologies were also identified.

Thin-Film Composite (TFC) Membranes with Hydrophilic Ethyl Cellulose-g-poly(ethylene glycol) (EP) Substrates for Forward Osmosis (FO) Application (친수성을 가지는 에틸셀룰로스-폴리에틸렌글리콜 가지형 고분자의 정삼투 복합막 지지층으로의 응용)

  • Yu, Yun Ah;Kim, Jin-joo;Kang, Hyo;Lee, Jong-Chan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.510-518
    • /
    • 2016
  • Ethyl cellulose-g-poly(ethylene glycol) (EP) was synthesized by esterification of carboxylic acid functionalized methoxy polyethylene glycol (MPEG-COOH) with ethyl cellulose (EC) in order to develop a hydrophilic substrate for thin-film composite (TFC) membrane in a forward osmosis (FO) system. A porous EP substrate, fabricated by a non-solvent induced phase separation method, was found to be more hydrophilic than the EC substrate due to the presence of polyethylene glycol (PEG) side chains in the EP. Since the EP substrate exhibits smaller water contact angles and higher porosity, the structural parameter (S) of TFC-EP is smaller than that of TFC-EC, indicating that internal concentration polarization (ICP) within porous substrates can occur less when TFC-EP is used as a membrane. For example, the water flux value of the TFC-EP is 15.7 LMH, whereas the water flux value of the TFC-EC is only 6.6 LMH. Therefore, we strongly believe that the TFC-EP could be a promising candidate with good FO performances.

Comparative Analysis of Seawater Desalination Technology in Korea and Overseas (국내 및 해외의 해수담수화 기술 비교분석)

  • Hwang, Moon-Hyun;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.255-268
    • /
    • 2016
  • Climate change has increased the need to secure a new water resource in addition to the traditional water resources such as surface water and ground water. The seawater desalination market is growing sharply in accordance with this situation in Korea, "seawater engineering & architecture of high efficiency reverse osmosis (SEAHERO)" program was launched in 2007 to keep pace with world market trend. SEAHERO program was completed in 2014, contributed to turn the domestic technology in evaporative desalination technology to RO desalination technology. Currently, it is investigated that the average specific energy consumption of the whole RO plant is around $3.5kWh/m^3$. The Busan Gi-jang plant has shown $3.7{\sim}4.0kWh/m^3$, including operational electricity for plant and maintenance building. Although not world top level, domestic RO technology is considered to be able to compete in desalination market. Separately, many researchers in the world are developing new technologies for energy savings. Various processes, forward osmosis (FO), membrane distillation (MD) process are expected to compete with RO in the future market. In Korea, FO-RO hybrid process, MD and pressure retarded osmosis (PRO) process are under development through the research program in Ministry of Land, Infrastructure and Transport (MOLIT). The desalination technology level is expected to decrease to $2.5kWh/m^3$.

Feasibility study on shale gas wastewater treatment using membrane distillation (막 증발법을 이용한 셰일가스 폐수 처리 가능성 평가)

  • Cho, Hyeongrak;Choi, Yongjun;Lee, Sangho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.441-447
    • /
    • 2016
  • Development of shale gas has drawn increasing attention since it is one of promising alternative energy resources. However, contamination of groundwater and surface water during the extraction of shale gas is becoming a serious environmental issues, which brings the needs to treat wastewater generated from hydraulic fracking. In this study, the feasibility of membrane distillation (MD) for the treatment of shale gas wastewater was investigated using a laboratory scale experimental setup. Flat-sheet MD membranes were used to treat produced water from a shale gas well in the United States. Different configurations such as direct contact MD (DCMD) and air gap MD (AGMD) were compared in terms of flux and fouling propensity. The foulants on the surface of the membranes were examined. The results suggest that MD can treat the shale gas produced water containing more than 200,000 mg/L of total dissolved solids, which is impossible by other technologies such as reverse osmosis (RO) and forward osmosis (FO). In this study, we investigated the possibility of processing and characterization of shale gas produce wastewater using membrane distillation. Laboratory scale membrane distillation experimental device was developed. It was compared the flat-sheet direct contact membrane distillation and flat-sheet air gap membrane distillation. AGMD flux in lower than the flux of DCMD, it was expected that the contamination caused by organic matters.

Sublayer assisted by hydrophilic and hydrophobic ZnO nanoparticles toward engineered osmosis process

  • Mansouri, Sina;Khalili, Soodabeh;Peyravi, Majid;Jahanshahi, Mohsen;Darabi, Rezvaneh Ramezani;Ardeshiri, Fatemeh;Rad, Ali Shokuhi
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2256-2268
    • /
    • 2018
  • Hydrophilic and hydrophobic polyethersulfone (PES)-zinc oxide (ZnO) sublayers were prepared by loading of ZnO nanoparticles into PES matrix. Both porosity and hydrophilicity of the hydrophilic sublayer were increased upon addition of hydrophilic ZnO, while these were decreased for the hydrophobic sublayer. In addition, the results demonstrated that the hydrophilic membrane exhibited smaller structural parameter (S value or S parameter or S), which is beneficial for improving pure water permeability and decreasing mass transfer resistance. In contrast, a higher S parameter was obtained for the hydrophobic membrane. With a 2 M NaCl as DS and DI water as FS, the pure water flux of hydrophilic TFN0.5 membrane was increased from $21.02L/m^2h$ to $30.06L/m^2h$ and decreased for hydrophobic TFN0.5 membrane to $14.98L/m^2h$, while the salt flux of hydrophilic membrane increased from $10.12g/m^2h$ to $17.31g/m^2h$ and decreased for hydrophobic TFN0.5 membrane to $3.12g/m^2h$. The increment in pure water permeability can be ascribed to reduction in S parameter, which resulted in reduced internal concentration polarization (ICP). The current study provides a feasible and low cost procedure to decrease the ICP in FO processes.

Graphene Oxide Incorporated Antifouling Thin Film Composite Membrane for Application in Desalination and Clean Energy Harvesting Processes (해수담수화와 청정 에너지 하베스팅을 위한 산화 그래핀 결합 합성 폴리머 방오 멤브레인)

  • Lee, Daewon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.16-34
    • /
    • 2021
  • Water supplies are decreasing in comparison to increasing clean water demands. Using nanofiltration is one of the most effective and economical methods to meet the need for clean water. Common methods for desalination are reverse osmosis and nanofiltration. However, pristine membranes lack the essential features which are, stability, economic efficiency, antibacterial and antifouling performances. To enhance the properties of the pristine membranes, graphene oxide (GO) is a promising and widely researched material for thin film composites (TFC) membrane due to their characteristics that help improve the hydrophilicity and anti-fouling properties. Modification of the membrane can be done on different layers. The thin film composite membranes are composed of three different layers, the top filtering active thin polyamide (PA) layer, supporting porous layer, and supporting fabric. Forward osmosis (FO) process is yet another energy efficient desalination process, but its efficiency is affected due to biofouling. Incorporation of GO enhance antibacterial properties leading to reduction of biofilm formation on the membrane surface. Pressure retarded osmosis (PRO) is an excellent process to generate clean energy from sea water and the biofouling of membrane is reduced by introduction of GO into the active layer of the TFC membrane. Different modifications on the membranes are being researched, each modification with its own advantages and disadvantages. In this review, modifications of nanofiltration membranes and their composites, characterization, and performances are discussed.

Current Status and Perspectives of Shale Gas Water Treatment Technology (셰일가스 수처리 기술 동향 및 전망)

  • Koo, Jae-Wuk;Lee, Sangho;Hong, Seungkwan;Kim, Joon Ha
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • Shale gas has the potential to significantly change the way of the world's energy use. However, there are increasing concerns on environmental problems, particularly with respect to water use and wastewater treatment. This paper highlights issues related to shale gas water management and technologies currently used to address them. It also presents perspectives of emerging technologies for the treatment of shale gas wastewater, including forward osmosis (FO) and membrane distillation (MD).

Evaluation of Reverse Electrodialysis System with Various Compositions of Natural Resources (다양한 농도 공급원의 조합을 통한 역전기투석 장치의 성능 평가)

  • Kwon, Kilsung;Park, Byung Ho;Kim, Dukhan;Kim, Daejoong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.513-518
    • /
    • 2015
  • Salinity gradient power (SGP) has attracted significant attention because of its high potential. In this study, we evaluate reverse electrodialysis (RED) with various compositions of available resources. The polarization curve (I-V characteristics) shows linear behavior, and therefore the power density curve has a parabolic shape. We measure the power density with varying compartment thicknesses and inlet flow rates. The gross power density increases with decreasing compartment thickness and increasing flow rate. The net power density, which is the gross power density minus the pumping power, has a maximum value at a compartment thickness of 0.2 mm and an inlet flow rate of 22.5 mL/min. The power density in RED is also evaluated with compositions of desalination brines, seawater, river water, wastewater, and brackish water. A maximum power density of $1.75W/m^2$ is obtained when brine discharged from forward osmosis (FO) and river water are used as the concentrated and the diluted solutions, respectively.