DOI QR코드

DOI QR Code

Comparative Analysis of Seawater Desalination Technology in Korea and Overseas

국내 및 해외의 해수담수화 기술 비교분석

  • Hwang, Moon-Hyun (Global Desalination Research Center, Gwangju Institute of Science and Technology) ;
  • Kim, In S. (Global Desalination Research Center, Gwangju Institute of Science and Technology)
  • 황문현 (광주과학기술원 글로벌담수화연구센터) ;
  • 김인수 (광주과학기술원 글로벌담수화연구센터)
  • Received : 2016.02.29
  • Accepted : 2016.04.11
  • Published : 2016.05.31

Abstract

Climate change has increased the need to secure a new water resource in addition to the traditional water resources such as surface water and ground water. The seawater desalination market is growing sharply in accordance with this situation in Korea, "seawater engineering & architecture of high efficiency reverse osmosis (SEAHERO)" program was launched in 2007 to keep pace with world market trend. SEAHERO program was completed in 2014, contributed to turn the domestic technology in evaporative desalination technology to RO desalination technology. Currently, it is investigated that the average specific energy consumption of the whole RO plant is around $3.5kWh/m^3$. The Busan Gi-jang plant has shown $3.7{\sim}4.0kWh/m^3$, including operational electricity for plant and maintenance building. Although not world top level, domestic RO technology is considered to be able to compete in desalination market. Separately, many researchers in the world are developing new technologies for energy savings. Various processes, forward osmosis (FO), membrane distillation (MD) process are expected to compete with RO in the future market. In Korea, FO-RO hybrid process, MD and pressure retarded osmosis (PRO) process are under development through the research program in Ministry of Land, Infrastructure and Transport (MOLIT). The desalination technology level is expected to decrease to $2.5kWh/m^3$.

기후변화는 현재 사용되고 있는 지표수 및 지하수 등의 담수자원 외에도 새로운 수자원을 확보해야할 필요성을 증가시켰다. 해수담수화 시장은 이러한 변화에 따라서 매년 급증하고 있는 상황이며, 이에 발맞추어 2007년 해수담수화 플랜트 사업단이 국내에서 출범하였다. 2014년에 종료된 해수담수화플랜트 사업단은 증발식 해수담수화 기술에 치우친 국내 기술을 역삼투방식 해수담수화 기술로 선회할 수 있도록 이끌었다. 현재 세계 최고의 역삼투방식 해수담수화 기술 에너지 효율성은 약 $3.5kWh/m^3$ 전후로 조사된다. 기장 플랜트의 수준은 $3.8{\sim}4.0kWh/m^3$ 수준으로 비록 세계 최고 수준에는 미치지 못하나, 선두권이라 하기에는 부족함이 없는 것으로 사료된다. 한편, 세계 역삼투방식 해수담수화 기술은 평준화 수준에 이른 것으로 사료되며, 에너지 저감을 위해 새로운 기술을 개발하고자 경쟁중이다. 미래 해수담수 시장에서 경쟁할 것으로 예상되는 기술로 정삼투공정, 막증발법 등이 있으며, 이를 위해 국내에서도 정역삼투 융합공정 개발, 막증발법 및 얍력지연삼투등의 기술개발을 진행중에 있다. 이를 통하여 국내 기술수준을 $2.5kWh/m^3$까지 낮출 것으로 기대된다.

Keywords

References

  1. Desalination Markets 2016, Global Water Intelligence(2015).
  2. Desalination Markets 2010, Global Water Intelligence(2010).
  3. Wittholz, M. K., O'Neill, B. K., Colby, C. B. and Lewis, D., "Estimating the Cost of Desalination Plants Using a Cost Database," Desalination, 229, 10-20(2008). https://doi.org/10.1016/j.desal.2007.07.023
  4. www.desaldata.com
  5. Voutchkov, N., "World Class Desalination Energy & the Environment," www.adelaide.edu.au(2011).
  6. Campos, C., "The Economics of Desalination for Various Uses," www.rac.es/ficheros/doc/00731.pdf.
  7. Liberman, B. and Liberman, I., "Starting Procedure of High-Pressure Pump with De-Rated Moter for Large-Scale SWRO Trains," Desalination, 132, 293-298(2000). https://doi.org/10.1016/S0011-9164(00)00163-6
  8. Sauvet-Goichon, B., "Ashkelon Desalination Plant-A Successful Challenge," Desalination, 203, 75-81(2007). https://doi.org/10.1016/j.desal.2006.03.525
  9. Martinho, A., "The High Pressure Pump Train on Reverse Osmosis Plants. Experience and Current Trends," Desalination, 138, 219-222(2001). https://doi.org/10.1016/S0011-9164(01)00267-3
  10. Guirguis, M. J., Energy Recovery Devices in Seawater Reverse Osmosis Desalination Plants with Emphasis on Efficiency and Economical Analysis of Isobaric versus Centrifugal Devices, Thesis of Master in University of South Florida(2011).
  11. Farooque, A. M., Jamaluddin, A. T. M., Al-Rewell, A. R., Jalaluddin, P. A. M., Marwani, S. M., Al-Mobayed, S. S. A. and Qasim, A. H., Comparative Study of Various Energy Recovery Devices Used in SWRO Process, Issued as Technical Report No. TR.3807/EVP02005(2004).
  12. Yun, T. I., Gabelich, C. J., Cox, M. R., Mofidi, A., A. and Lesan, R., "Reducing Costs for Large-scale Desalting Plants Using Large-diameter, Reverse Osmosis Membranes," Desalination, 189, 141-154(2006). https://doi.org/10.1016/j.desal.2005.06.022
  13. Lisa Henthorne, P. E., Bartels, C., Bergman, R., Hallan, M., Kanppe, P., Losier, J., Metcalfe, P., Peery, M. and Shelby, I., "Large Diameter RO Technology," www.grahamtek.com
  14. Guidelines for Drinking-Water Quality, WHO Forth Edition (2011).
  15. Bartels, C. R., Franks, R. and Bates, W., "Design Advantages for SWRO using Advanced Membrane Technology," IDA J. Desalination and Water Reuse, 2(24), 21-25(2010). https://doi.org/10.1179/ida.2010.2.4.21
  16. Fritzmann, C., Lowenberg, J., Wintgens, T. and Melin, T., "Stateof-the-art of reverse osmosis desalination," Desalination, 216, 1-76(2007). https://doi.org/10.1016/j.desal.2006.12.009
  17. Wilf, M., Tedesco, S., Arnold, H. and Hudkins, J., "Effectvie Desing of Seawater RO Systems with New Generation of High Permeability Membrane Elements," IDA World congress, San Diego, USA(2015).
  18. Winter, H., "Twenty Years Exprience in Seawater Reverse Osmosis and How Chemicals in Pretreatment Affect Fouling of Membrane," Desalination, 110, 93-96(1997). https://doi.org/10.1016/S0011-9164(97)00088-X
  19. World Intellectual Property Organization, Apparatus for Treating Soultions of High Osmotic Strength, Patent Application Number PCT/US2005/006224(2005).
  20. Garcia Molina, V., Busch, M. and Sehn, P., "Cost Savings by Novel Seawater Reverse Osmosis Elements and Design Concepts," Desal. and Water Treatment, 7, 160-177(2009). https://doi.org/10.5004/dwt.2009.703
  21. Penate, B. and Garcia-Rodriguez, L., "Reverse Osmosis Hybrid Membrane Inter Stage Design : A Comparative Performance Assessment," Desalination, 281, 354-363(2011). https://doi.org/10.1016/j.desal.2011.08.010
  22. Spiritos, E. and Lipchin, C. Water Policy in Israel: Chapter 7 Desalination in Israel, Springer, pp. 101-123(2013).
  23. Carlsbad Seawater Desalination Project, Energy Minimization and Greenhouse Gas Reduction Plan, Http://carlsbaddesal.com/ (2008).
  24. Thompson, N. A. and Nicoll, P. G., "Forward Osmosis Desalination: A Commercial Reality," IDA World Congress, Perth Australia(2011).
  25. Roh, I., Li, C., Kaur, S., Revanur, R., Klare, J., Benton, C., Desormeaux, E. and Bakajin, O., "Development of High Performance FO Membrane and Element for High Revery at Minimal Energy Cost," The 8th International Desalination Workshop, pp. 10-12(2015).
  26. Seminat, R., Sapoznik, J. and Hasson, D., "Energy Aspects in Osmosis Processes," Desalination and Water Treatment, 15, 228-235(2012).
  27. Shaffer, D. L., Werber, J. R., Jaramillo, H., Lin, S. and Elimelech, M., "Forward Osmosis: Where Are We Now?," Desalination, 356, 271-284(2015). https://doi.org/10.1016/j.desal.2014.10.031
  28. Bamaga, O. A., Yokochi, A. and Beaudry, E. G., "Application of Forward Osmosis in Pretreatment of Seawater for Small Reverse Osmosis Desalination Units," Desalination and Water Treatment., 5, 183-191(2009). https://doi.org/10.5004/dwt.2009.574
  29. Bodell, B. R., Silicone Rubber Vapor Diffusion in Saline Water Distillation, US Patent 285,032(1963).
  30. Fujii, Y., Kigoshi, S., Iwatani, H. and Aoyama, M., "Selectivity and characteristics of direct contact membrane distillation type experiment. : I. Permeability and selectivity through dried hydrophobic fine porous membranes," J. Membr. Sci., 72, 53-72(1992). https://doi.org/10.1016/0376-7388(92)80056-P
  31. Fujii, Y., Kigoshi, S., Iwatani, H., Aoyama, M. and Fusaoka, Y., "Selectivity and characteristics of direct contact membrane distillation type experiment : II. Membrane treatment and selectivity increase," J. Membr. Sci., 72, 73-89(1992). https://doi.org/10.1016/0376-7388(92)80057-Q
  32. El-Bourawi, M. S., Ding, Z., Ma, M. and Khayet, M., "A framework for better understanding membrane distillation separation process," J. Membr. Sci., 285, 4-29(2006). https://doi.org/10.1016/j.memsci.2006.08.002
  33. Wang, P. and Chung, T. S., "Recent Advances in Membrane Distillation Processes: Membrnae Development, Configuration Design and Application Exploring," J. Membr. Sci., 474, 39-56(2015). https://doi.org/10.1016/j.memsci.2014.09.016
  34. Wang, P., Teoh, M. M. and Chung, T. S., "Morphological Architecture of Dual-Layer Hollow Fiber for Membrane Distillation with Higher Desalination Performance," Water Res., 45, 5489-5500(2011). https://doi.org/10.1016/j.watres.2011.08.012
  35. Schwantes, R., Cipollina, A., Gross, F., Koschikowski, J., Pfeifle, D., Rolletschek, M. and Subiela, V., "Membrane Distillation: Solar and Waste Heat Driven Demonstation Plants for Desalination," Desalination, 323, 93-106(2013). https://doi.org/10.1016/j.desal.2013.04.011
  36. Koschikowski, J., Wieghaus, M. and Rommel, M., "Solar Thermal-Driven Desalination Plants Based on Membrane Distillation," Desalination, 156, 295-304(2003). https://doi.org/10.1016/S0011-9164(03)00360-6
  37. Guillen-Burrieza, E., Blanco, J., Zaragoza, G., Alarcon, D. C., Palenzuela, P., Ibarra, M. and Gernjak, W., "Experimental Analysis of an Air Gap Membrane Distillation Solar Desalination Pilot System," J. Membr. Sci., 379, 386-396(2011). https://doi.org/10.1016/j.memsci.2011.06.009
  38. Barnat, F., Jwaied, N., Rommel, M., Koschikowski, J. and Wieghaus, M., "Performance Evaluation of the "Large SMADES" Autonomous Desalination Solar-Driven Membrane Distillation Plant in Aqaba, Jordan," Desalination, 217, 17-28(2007). https://doi.org/10.1016/j.desal.2006.11.027
  39. Wang, X., Zhang, L., Yang, H. and Chen, H, "Feasibility research of potable water production via solar-heated hollow fiber membrane distillation system," Desalination, 247, 403-411(2009). https://doi.org/10.1016/j.desal.2008.10.008
  40. Walton, J. Lu, H., Turner, C., Solis, S. and Hein, H., Solar and Waste Heat Desalination by Membrane Distillation, U.S. Department of the Interior Bureau of Reclamation, Final Report 98-FC-81-0048 Desalintion Research and Development Program(2000).
  41. Kullab, A., Liu, C. and Martin, A., Solar desalination using membrane distallation - technical evaluation case study, International Solar Energy Society Conference, Orlando, FL, August(2005).
  42. Banat, F. and Jwaied, N., "Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units," Desalination, 220, 566-573(2008). https://doi.org/10.1016/j.desal.2007.01.057
  43. Hogan, P. A., Sudjito, Fane, A. G. and Morrison, G. L., "Desalination by Solar Heated Membrane Distillation," Desalination, 81, 81-90(1991). https://doi.org/10.1016/0011-9164(91)85047-X
  44. Jansen, A. and Bikel, M., "Water Treatment, How Do Membrane Position Today?," Developing Future Water Technologies-Membranes, Dipoli, Espoo, Finland(2011).
  45. Kim, S. H., Oh, B. S., Hwang, M. H., Hong, S. K., Kim, J. H., Lee, S. H. and Kim, I. S., "An Ambitious Step to the Future Desalination Technology:SEAHERO R&D Program (2007-2012)," Appl. Water Sci., 1, 11-17(2011). https://doi.org/10.1007/s13201-011-0003-4
  46. Wilf, M. and Bartels, C., "Optimization of Seawater RO Systems Design," Desalination, 173, 1-12(2005). https://doi.org/10.1016/j.desal.2004.06.206
  47. The Valuation of Output in SEAHERO program, Technovation Partners(2013).
  48. Wan, C. F. and Chung, T. S., "Energy Recovery by Pressure Retarded Osmosis (PRO) in SWRO-PRO integrated Process," Applied Energy, 162, 687-698(2016). https://doi.org/10.1016/j.apenergy.2015.10.067
  49. Voutchkov, N., Desalination Engineering Planning and Design, McGraw-Hill, pp. 359-443(2013).
  50. She, Q., Wang, R., Fand, A. G. and Tang, C. Y., "Membrane Fouling in Osmotically Driven Membrane Processes: A Review," J. Membr. Sci., 499, 201-233(2016). https://doi.org/10.1016/j.memsci.2015.10.040

Cited by

  1. Estimation of Water Production Cost from Seawater Reverse Osmosis (SWRO) Plant in Korea vol.39, pp.4, 2017, https://doi.org/10.4491/KSEE.2017.39.4.169