DOI QR코드

DOI QR Code

Seasonal Nitrogen Oxides Improvement due to On-road Mobile Air Pollution Source Emission Control Plan in Seoul Metropolitan Area

도로이동오염원 대기오염 저감대책에 의한 수도권 지역 계절별 질소산화물 개선효과

  • Kim, Yoo Jung (Social Eco-Tech Institute, Konkuk University) ;
  • Jeong, Hye-Seon (Department of Advanced Technology Fusion, Konkuk University) ;
  • Kim, Suhyang (Department of Advanced Technology Fusion, Konkuk University) ;
  • Ma, Young-Il (Department of Advanced Technology Fusion, Konkuk University) ;
  • Lee, Woo-Keun (Department of Environmental Engineering, Kangwon National University) ;
  • Kim, Jeongsoo (Transportation pollution research Center, National Institute of Environmental Research) ;
  • Sunwoo, Young (Department of Environmental Engineering, Konkuk University)
  • 김유정 (건국대학교 소셜에코텍 연구소) ;
  • 정혜선 (건국대학교 신기술융합학과) ;
  • 김수향 (건국대학교 신기술융합학과) ;
  • 마영일 (건국대학교 신기술융합학과) ;
  • 이우근 (강원대학교 환경공학과) ;
  • 김정수 (국립환경과학원 교통환경연구소) ;
  • 선우영 (건국대학교 환경공학과)
  • Received : 2014.04.15
  • Accepted : 2016.04.15
  • Published : 2016.05.31

Abstract

In order to improve air quality in the Seoul Metropolitan Area (SMA), the "Special Act on Seoul Metropolitan Air Quality Improvement" has been enforced since 2005. The strategy has resulted in some reduction of air pollution, but there has not been much research into the quantitative impact analysis of each separate preventive countermeasure. Therefore, we analyzed nitrogen oxide reduction resulting from implementation of the emission control plan for on-road mobile sources. The MM5-SMOKE-CMAQ model system was employed for air quality prediction. Reduced $NO_x$ emissions for SMA was 16,561 ton, 4.7% of reduction rate, in 2007. One countermeasure, tighter acceptable standards for manufacturing vehicles, dominated other countermeasures for effective $NO_x$ emission control. Large spatial differences in reduced emissions, those for Seoul being twice that of Incheon and Gyeonggi, showed greater $NO_x$ emission reduction impact in the heart of the metropolitan complex. The $NO_2$ concentration decreased by 0.60 ppb (2.0%), 0.18 ppb (1.5%), and 0.22 ppb (1.7%) in Seoul, Incheon, and Gyeonggi, respectively. Concentration decreases in spring and winter were larger, 1.5~2.0 times, than summer and fall. However, the $NO_2$ reduction impact did not correspond directly to local $NO_x$ emission controls in the city area because of the natural flow and dispersion, both urban and downwind.

수도권지역의 대기오염을 개선하기 위해 수도권 대기환경 개선에 관한 특별법이 제정되었고 2005년부터 시행되었다. 그 결과 수도권의 대기질은 개선되었으나 각 대책의 평가에 대한 연구는 부족하다. 이에, 본 연구는 도로이동오염원의 배출량 저감정책이 질소산화물의 농도저감에 미치는 영향을 정량적으로 분석하고자 하였다. 이를 위해 MM5-SMOKE-CMAQ 모델 시스템을 이용하여 수치모사를 수행하였다. 2007년 수도권 $NO_x$ 저감 배출량은 16,561톤으로서 4.7%의 저감률을 보였다. 여러 대책 중 제작차 배출허용기준강화 대책이 가장 효과적이었다. 지역별 삭감실적은 차이가 커서 서울의 삭감률은 인천과 경기의 약 2배에 달하였다. 결과적으로 $NO_x$ 저감의 효과는 서울 도심에 집중적으로 나타났다. 이동오염원 저감대책에 의하여 서울의 $NO_2$ 농도는 연평균 0.60 ppb (2.0%)저감되었고 인천과 경기는 각각 0.18 ppb (1.5%), 0.22 ppb (1.7%)가 저감되었다. 봄과 겨울의 저감농도는 여름과 가을에 비해 1.5~2.0배 정도 높았다. 도심과 풍하지역으로의 $NO_2$ 저감효과 분산때문에 도심지역의 $NO_x$ 배출량 저감이 직접적인 $NO_2$ 농도 저감에 효과적이지 않았다.

Keywords

References

  1. Lim, J.-S., Kim, S.-S., Park, D.-S., Joo, J.-H., Lim, C.-K. and Hur, J.-H., "Monitoring of polycyclic aromatic hydrocarbon residues in environmental samples in Korea," The Korean J. Pesticide Sci., 11(2), 95-105(2007).
  2. Cho, S.-J., Kim, S.-D., Jung, J.-H., Park, C.-H., Kim, J.-H. and Kim, M.-Y., "Effects on Air Pollution of Traffic Around about Cheonggye-4ga," Proc. 45th Meeting of Korean Soc. Atmos. Environ., pp. 420-422(2007).
  3. Lee, S.-B. and Bae, G.-N., "Characteristics of Air Pollution at a Roadside Contaminated with Vehicle Emissions," Proceeding of The Korean Society of Automotive Engineers for the 30th Anniversary, pp. 398-402(2008).
  4. Lee, S.-B. and Bae, G.-N., "Characteristics of air pollution at a junction area contaminated with vehicle emissions," Trans. Korean Soc. Automotive Eng., 18(4), 48-53(2010).
  5. Laden, F., Neas, L. M., Dockery, D. W. and Schwartz, J., "Association of fine particulate matter from different sources with daily mortality in six US cities," Environ. Health Perspec., 108, 941-947(2000). https://doi.org/10.1289/ehp.00108941
  6. "Annual Report of Ambient Air Quality in Korea, 2014," Ministry of Environment(2015).
  7. "Enforcement Performance Evaluation Report for Air Quality Management Plan in Seoul Metropolitan Area," Ministry of Environment(2009).
  8. "Performance Evaluation Report for Air Quality Improvement Enforcement Plan in Seoul Metropolitan Area in 2007," Ministry of Environment(2008).
  9. Grell, G. A., Dudhia, J. and Stauffer, D. R., 1995, "A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR/TN-398+STR," National Center for Atmospheric Research, Boulder, Colorado, p. 107(1994).
  10. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A., "Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave," J. Geophysical Res.: Atmos. (1984-2012), 102 (D14), 16663-16682(1997). https://doi.org/10.1029/97JD00237
  11. Dudhia, J., "A multi-layer soil temperature model for MM5," The Sixth PSU/NCAR Mesoscale Model Users' Workshop, Boulder, Colorado, 49-50(1996).
  12. Sunwoo, Y. et. al., "Development in Community Version for Next Generation Acid Deposition Model and Quantitative Source-receptor relationship of Nitrogen Oxides(I)," National Institute of Environmental Research(2009).
  13. Sunwoo, Y. et. al., "Development and estimation of Emission Inventory System for Long-range Transport Air Pollutant Modeling Optimization in Northeast Asia(I)," National Institute of Environmental Research(2009).
  14. Moon, N., Kim, S., Byun, D. W. and Joe, Y., "Air Quality Modeling System I: Development of Emissions Preparation System with the CAPSS," Korea Environment Institute(2006).
  15. Moon, N., Kim, S., Byun, D. W. and Lee, K. Y., "Air Quality Modeling System II," Korea Environment Institute(2007).
  16. Byun, D. W. and Ching, J., "Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System," United States Environmental Protection Agency Rep. EPA-600/R-99/030, p. 727(1999).
  17. Gery, M. W., Whitten, G. Z., Killus, J. P. and Dodge, M. C., "A photochemical kinetics mechanism for urban and regional scale computer modeling," J. Geophysical Res.: Atmos. (1984-2012), 94(D10), 12925-12956(1989). https://doi.org/10.1029/JD094iD10p12925
  18. Odman, M. T., "Research on Numerical Transport Algorithms for Air Quality Simulation Models," Environmental Protection Agency(1998).
  19. Community Modeling and Analysis System Institute (CMAS), "Operational Guidance for the Community Multiscale Air Quality (CMAQ) Modeling System version 4.7.1.," http://www.cmaq-model.org(2010).
  20. Emery, C. and Tai, E., "Meteorological Modeling and Performance Evaluation of the September 13-20, 1999 Ozone Episode," Prepared for the Texas Near Non-Attainment Areas through the Alamo Area Council of Governments, by ENVIRON International Corp, Novato, CA(2001).
  21. Hurley, P. J., Blockley, A. and Rayner, K., "Verification of a prognostic meteorological and air pollution medel for year-long predictions in the Kwinana industrial region of Western Australia," Atmos. Environ., 35(10), 1871-1880(2001). https://doi.org/10.1016/S1352-2310(00)00486-6