• Title/Summary/Keyword: Formulation changes

Search Result 267, Processing Time 0.024 seconds

Free-surface Boundary Condition in Time-domain Elastic Wave Modeling Using Displacement-based Finite-difference Method (시간영역 변위근사 유한차분법의 자유면 경계조건)

  • Min Dong-Joo;Yoo Hai Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.77-86
    • /
    • 2003
  • We designed a new time-domain, finite-difference, elastic wave modeling technique, based on a displacement formulation. which yields nearly correct solutions to Lamb's problem. Unlike the conventional, displacement-based, finite-difference method using a node-based grid set (where both displacements and material properties such as density and Lame constants are assigned to nodal points), in our new finite-difference method, we use a cell-based grid set (where displacements are still defined at nodal points but material properties within cells). In the case of using the cell-based grid set, stress-free conditions at the free surface are naturally described by the changes in the material properties without any additional free-surface boundary condition. Through numerical tests, we confirmed that the new second-order finite differences formulated in the cell-based grid let generate numerical solutions compatible with analytic solutions unlike the old second-order finite-differences formulated in the node-based grid set.

Formulating Reduced-fat Sausages with Quinoa or Teff Flours: Effects on Emulsion Characteristics and Product Quality

  • Ozturk-Kerimoglu, Burcu;Kavusan, Hulya Serpil;Tabak, Damla;Serdaroglu, Meltem
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.710-721
    • /
    • 2020
  • This study dealt with the use of quinoa flour (QF) or teff flour (TF) as partial beef fat replacers in the formulation of emulsion-type sausages. A control (C) group was manufactured with 20% beef fat, while the other three groups were formulated with 10% beef fat plus 5% QF (Q), 5% TF (T), and 2.5% QF+2.5% TF (QT). Water-holding capacity of the emulsions was higher in Q (81.81%), T (82.20%), and QT (84.10%) samples than in C (64.83%) samples. Total expressible fluid and expressible fat were the lowest in Q and T samples, indicating the highest emulsion stability of those groups. Incorporation of QF and TF into formulations increased moisture and carbohydrate contents while decreased fat and energy values. Besides, the use of QF was effective to increase protein and dietary fiber contents. T sausages had lower luminosity (L) and higher yellowness (b) than C sausages, whilst Q sausages did not result in significant color changes. Higher cook yield values were recorded in Q (97.96%), T (98.21%), and QT (98.15%) samples compared with C (96.44%) samples. Inclusion of QF and TF to formulation led to lower hardness and gumminess, while utilization of TF was also effective to decrease chewiness. Consequently, healthier emulsified sausages were obtained by the inclusion of QF or TF that could decrease the fat content more than 50% without sacrificing overall quality, bringing advantages by quinoa over teff for increasing nutritional value and leading minimal modifications on color and texture.

Effects of R. Glutinosa and E. Senticosus on Postmenopausal Osteoporosis

  • Oh, Soo-Yeon;Aryal, Dipendra Kumar;Kim, Yoon-Gyoon;Kim, Hyung-Gun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.3
    • /
    • pp.121-127
    • /
    • 2007
  • In this study, we investigated the therapeutic effects of a novel formulation of low-dose calcium and vitamin $D_3$ blended with Rehmannia glutinosa Libosch and Eleutherococcus senticosus Max (RE+), in postmenopausal women. The controls were given either a placebo or high dose calcium and vitamin $D_3$ (Ca + D). Bone mineral density (BMD) in the L2-3 lumber spines and femur regions was assessed, and serum osteocalcin, bone-specific alkaline phosphatase (BALP), and cross-linked N-telopeptide of type I collagen (NTx) were used as markers of osteoblast and osteoclast activity. Furthermore, all variables were measured before and after 6 and 12 months of treatment. The osteocalcin level was higher in the RE+ group, and BALP was almost the same in all groups. Serum NTx was significantly decreased in the RE+ group after 12 months (p<0.05). The NTx in the Ca + D and placebo groups showed no significant change. The decrease of femur BMD was further demonstrated in the placebo group, but significantly increased in the RE+ group after 6 and 12 months of treatment (p<0.05). There were significant differences in the percent changes of femur BMD between the placebo and RE+ groups (p<0.01) and Ca+D and RE+ groups (p<0.05). The decrease of spine BMD in the placebo group was inhibited both in the Ca + D and RE+ groups, however, there was significant difference only between the placebo and RE+ groups (p<0.05). These findings suggest that continuous oral therapy of the RE+ formulation reduces rapidly decreasing bone mineral density in postmenopausal women more effectively than high doses of calcium and vitamin $D_3$ alone by inhibiting osteoclastic activity. Therefore, it seems that the RE+ has its own antiosteoporotic effects. We suggest larger clinical studies to determine the most efficacious dosage and benefits of this novel treatment.

Effects of Branched Dextrin on the Quality Characteristics of Frozen Soft Roll Dough and its Bread during Storage (분지 덱스트린 첨가가 냉동 소프트롤 반죽 및 빵의 저장 중 품질 특성에 미치는 영향)

  • Park, Jin-Hee;Lim, Chun-Son;Kim, Il-Hwan;Kim, Mun-Yong
    • Korean journal of food and cookery science
    • /
    • v.27 no.5
    • /
    • pp.507-522
    • /
    • 2011
  • In this study, samples of wheat flour and dough were prepared by adding of 1, 3, or 5% branched dextrin, which is produced from the amylopectin of waxy corn starch using a cyclization reaction with a branching enzyme. The samples were then evaluated qualitatively in terms of farinogram, viscogram, and extensogram characteristics. The fermentation power of dough expansion, extensogram characteristics, specific volume, baking loss, external/internal surface appearance, and sensory qualities were also examined after 4 weeks of storage at -20$^{\circ}C$ to determine the effect on freeze-thaw stability and quality improvement of branched dextrins in the soft roll bread formulation. Furthermore, the samples along with a control were compared regarding their quality characteristics, including changes in moisture content, water activity, color, and textural characteristics during a storage period of 4 days at 20$^{\circ}C$ to determine the effect on preventing retrogradation of the branched dextrin. As the branched dextrin content increased, area and extensibility increased, whereas water absorption, fermentation power of dough expansion, resistance/extensibility ratio, baking loss, and brownness of the crust decreased. However, the control group presented significantly higher peak viscosity, resistance, specific volume, taste, overall acceptability, moisture content, water activity, springiness, cohesiveness, and resilience values than those of the branched dextrin samples, whereas lightness, hardness, and chewiness showed the reverse effect. As the storage period increased, lightness, hardness, and chewiness increased, whereas cohesiveness decreased. In conclusion, the results indicate that adding 1~3% branched dextrin into a soft roll bread formulation from frozen dough had no positive effect on freeze-thaw stability or preventing retrogradation but may provide good nutritional properties.

Time Evolution of Water Permeability Coefficient of Carbonated Concrete (탄산화된 콘크리트의 투수계수에 대한 시간단계별 해석)

  • Yoon, In-Seok;Lee, Jeong-Yun;Cho, Byung-Young;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1053-1056
    • /
    • 2008
  • Permeability coefficient of concrete is a substantial key parameter for understanding the durability performance of concrete and its micro-structural densification. Many researches to deal with the issue have been accomplished, however, it is very rare to deal with the theoretical study on permeability coefficient in connection with carbonation of concrete and the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. The purpose of this study is to establish a fundamental approach to compute the permeability coefficient of (non)carbonated concrete. When simulating micro-structural characteristics as a starting point for deriving a model for the permeability coefficient by the numerical simulation program for cementitious materials, HYMOSTRUC, a more realistic formulation can be achieved. For several compositions of cement pastes, the permeability coefficient is calculated with the analytical formulation, followed by a microstructure-based model. Emphasis is on the micro-structural changes and its effective change of the permeability coefficient of carbonated concrete. The results of micro-structural water permeability coefficient model will be compared with results achieved from permeability experiments.

  • PDF

Comparison of Efficacy Between Micronised- and Non-micronised Fenofibrate in Type 2 Diabetic Patients with Dyslipidemia (이상지혈증을 동반한 제2형 당뇨병환자에서 미세화된 fenofibrate)

  • 신화연;오정미;강문호;신현택
    • YAKHAK HOEJI
    • /
    • v.45 no.5
    • /
    • pp.468-475
    • /
    • 2001
  • Fenofibrate is a fibric acid derivative that is a strong reducer of triglyceride. Micronozed formulation of fenofibrate has improved bioavailability compared to non-micrornized formulation. This study performed a retrospective comparison of micrornized and non-micrornized fenofibrate (28 in micronized and 51 in non-micronized group) by comparing the means of changes in total triglyceride, total cholesterol, HDL-cholesterol and TC/HDL ratio in type 2 diabetics with dyslipidemia The result skewed that after 12 weeks of treatment both drugs produced a significant reduction in total triglyceride levels (62% with micronized, 37% with non-micronized). The mean decrease observed for total triglyceride levels were significantly lower for micronized fenofibrate (p<0.001). Both drugs showed a significant reduction for total cholesterol levels (-22% with micronized, -14% with non-micronized fenofibrate). The mean decrease observed for total cholesterol was not significantly different between the two drugs (p>0.05). HDL-cholesterol levels increased by 24% and 15%) with micronized and non-micronized, respectively and the differences from the baseline were statistically significant for both drugs (p<0.05). The mean change of HDL-cholesterol was not significantly different between the two drugs. There was a statistically significant reduction in TC/HBL-cholesterol ratio from baseline for both drugs (7.1 to 4.8 with micronized and 5.1 to 4.5 with non-micronized), and the reduction of TC/HDL-cholesterol ratio tended to be significantly greater with micronized fenofibrate (p<0.05). This study shows that short-term treatment with micronized fenofibrate is more effective than non-micronized fenosbrate in type 2 diabetes patients with dyslipidemia.

  • PDF

Partial replacement of pork backfat with konjac gel in Northeastern Thai fermented sausage (Sai Krok E-san) to produce the healthier product

  • Sorapukdee, Supaluk;Jansa, Sujitta;Tangwatcharin, Pussadee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1763-1775
    • /
    • 2019
  • Objective: The influence of konjac gel level on fermentation process and product qualities were assessed to evaluate the feasibility of using it as fat analog in Northeastern Thai fermented sausage (Sai Krok E-san). Methods: Five treatments of fermented sausages were formulated by replacing pork backfat with 0%, 7.5%, 22.5%, and 30% konjac gel. The changes in lactic acid bacteria (LAB) and important physicochemical properties of samples were assessed during 3 days of fermentation. After the end of fermentation at day 3, water activity ($a_w$), instrumental texture, color, microbial counts, and sensory evaluation were compared. The best product formulation using konjac for replacing pork back fat were selected and used to compare proximate composition and energy value with control sample (30% pork backfat). Results: An increase in konjac gel resulted in higher values of LAB, total acidity, and proteolysis index with lower pH and lipid oxidation during 3 days of product fermentation (p<0.05). It was noted that larger weight loss and product shrinkage during fermentation was observed with higher levels of konjac gel (p<0.05). The resulting sausage at day 3 with 15% to 30% konjac gel exhibited higher hardness, cohesiveness, gumminess, springiness, and chewiness than control (p<0.05). The external color of samples with 22.5% to 30% konjac gel were redder than others (p<0.05). Mold, Salmonella spp., Staphylococcus aureus, and Escherichia coli in all finished products were lower than detectable levels. Product with 15% konjac gel had the highest scores of sourness linking and overall acceptability (p<0.05). Conclusion: The product with 15% of konjac gel was the optimum formulation for replacing pork backfat. It had higher sensorial scores of sourness and overall acceptability than control with less negative impact on external appearance (product shrinkage) and weight loss. Moreover, it provided 46% fat reduction and 32% energy reduction than control.

Chemical Structure Analysis of Non-ionic Monomer Contrast Agents Using 1H-NMR Spectroscopy (1H-NMR Spectroscopy를 이용한 Non-ionic Monomer 조영제의 화학적 구조 분석)

  • Han, Beom-Hee
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.335-342
    • /
    • 2021
  • Studies on the side effects of contrast agents are being discussed based on various cases, but studies analyzing the chemical structure of the underlying contrast agents are difficult to understand as the manufacturers have not disclosed them. Therefore, in this study, the chemical structure of the contrast medium was analyzed using 1H-NMR spectrometer for Omnipaque contrast medium prepared from Iohexol, which is a nonionic iodide contrast medium, Xenetix contrast medium from Iobitridol, and Iomeron contrast medium from Iomeprol. As a result, it was found that the Omnipaque contrast medium of Iohexol had 6 carboxyl groups, 3 carbonyl groups, 4 amine groups, 1 methyl group, and 2 cyano groups. It was found that the Xenetix contrast medium of the iobitridol formulation had 6 carboxyl groups, 3 carbonyl groups, 2 amine groups, and 4 cyano groups. It was found that the Iomeron contrast agent of the Iomeprol formulation had 5 carboxyl groups, 3 carbonyl groups, 4 amine groups, 1 methyl group, and 2 cyano groups. As shown in this study, the chemical structure of the non-ionic monomer contrast agent increases its affinity with water by binding a number of hydroxyl groups (OH) to the carboxyl group. It is necessary to accurately identify each of these factors and analyze the physical and chemical changes of the contrast medium according to various environmental factors.

An In sight into Novel Drug Delivery System: In Situ Gels

  • Bashir, Rabiah;Maqbool, Mudasir;Ara, Irfat;Zehravi, Mehrukh
    • CELLMED
    • /
    • v.11 no.1
    • /
    • pp.6.1-6.7
    • /
    • 2021
  • In situ gelling devices, as they enter the body, are dosage forms in the shape of the sol but turn into gel types under physiological circumstances. Transition from sol to gel is contingent on one or a mixture of diverse stimuli, such as transition of pH control of temperature, irradiation by UV, by the occurrence of certain ions or molecules. Such characteristic features may be commonly employed in drug delivery systems for the production of bioactive molecules for continuous delivery vehicles. The technique of in situ gelling has been shown to be impactful in enhancing the potency of local or systemic drugs supplied by non-parenteral pathways, increasing their period of residence at the absorption site. Formulation efficacy is further improved with the use of mucoadhesive agents or the use of polymers with both in situ gelling properties and the ability to bind with the mucosa/mucus. The most popular and common approach in recent years has provided by the use of polymers with different in situ gelation mechanisms for synergistic action between polymers in the same formulation. In situ gelling medicine systems in recent decades have received considerable interest. Until administration, it is in a sol-zone and is able to form gels in response to various endogenous factors, for e.g elevated temperature, pH changes and ions. Such systems can be used in various ways for local or systemic supply of drugs and successfully also as vehicles for drug-induced nano- and micro-particles. In this review we will discuss about various aspects about use of these in situ gels as novel drug delivery systems.

Precision feeding and precision nutrition: a paradigm shift in broiler feed formulation?

  • Moss, Amy F.;Chrystal, Peter V.;Cadogan, David J.;Wilkinson, Stuart J.;Crowley, Tamsyn M.;Choct, Mingan
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.354-362
    • /
    • 2021
  • Broiler chickens grow rapidly, and their nutrient requirements change daily. However, broilers are fed three to five diet phases, meaning nutrients are under or oversupplied throughout production. Increasing diet phases improves production efficiency as there is less time in the production cycle that nutrients are in under or over-supply. Nevertheless, the process of administering four or more diets is costly and often impractical. New technologies are now available to blend feed to match the daily nutrient requirements of broilers. Thus, the aim of this review is to evaluate previous studies measuring the impact of increasing feed phases on nutrient utilisation and growth performance, and review recent studies taking this concept to the extreme; precision nutrition - feeding a new diet for each day of the production cycle. This review will also discuss how modern precision feeding technologies have been utilised and the potential that new technologies may bring to the poultry industry. The development of a precision nutrition regime which targets daily requirements by blending dietary components on farm is anticipated to improve the efficiency of production, reduce production cost and therefore improve sustainability of the industry. There is also potential for precision feeding technology along with precision nutrition strategies to deliver a plethora of other management and economic benefits. These include increased fluidity to cope with sudden environmental or market changes, and the ability to alter diets on a farm by farm level in a large, integrated operation. Thus, the future possibilities and practical implications for such technologies to generate a paradigm shift in feed formulation within the poultry industry to meet the rising demand for animal protein is also discussed.