• Title/Summary/Keyword: Forming method

Search Result 2,606, Processing Time 0.02 seconds

Blank Design in Sheet Metal forming Process Using the Rollback Method (롤백방법을 이용한 박판금속성형공정에서의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.454-464
    • /
    • 1999
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between the deformed blank contour and the target contour shape into account. the minimization object function R is proposed. Based on the method, a computer program composed of blank design module, FE-analysis module and mesh generation module is developed. The rollback method is applied to square cup, reentrant cross section, L-shaped cup drawing process with the flange of uniform size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary blank shape after several modifications. Good agreements are recognized between the numerical results and the published experimental results for initial blank shape and thickness strain distribution. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

FE Analysis on the Serrated Forming Process using Multi-action Pressing Die (복동금형을 이용한 돌기성형공정에 관한 유한요소해석)

  • Jang, D.H.;Ham, K.C.;Ko, B.D.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.429-435
    • /
    • 2008
  • In this paper, the serrated forming process is analyzed with finite element method. The seal should secure the overlapping portions of ligature, which has teeth for ligature to prevent from slipping each other after clamping. In the simulation, rigid-plastic finite element model has been applied to the serration forming process. Serration or teeth forming characteristics has been analyzed numerically in terms of teeth geometry based on different forming conditions. Analyses are focused to find the influence of different die movements and geometries on the tooth geometry, which is crucial for securing overlapping portions of ligature. Two major process variables are selected, which are the face angle and entry angle of punch, respectively. Extensive investigation has been performed to reveal the influences of different entry and face angles on the geometry of teeth formation in the simulation. Three different face angles of punch have been selected to apply to each simulation of serrated sheet forming process with every case of punch entry angles. Furthermore, tooth geometries predicted from simulation have been applied to the indention process for comparing proper tooth geometries to secure the sealing.

A Study of 3D Design Data Extraction for Thermal Forming Information

  • Kim, Jung;Park, Jung-Seo;Jo, Ye-Hyan;Shin, Jong-Gye;Kim, Won-Don;Ko, Kwang-Hee
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.1-13
    • /
    • 2008
  • In shipbuilding, diverse manufacturing techniques for automation have been developed and used in practice. Among them, however, the hull forming automation is the one that has not been of major concern compared with others such as welding and cutting. The basis of the development of this process is to find out how to extract thermal forming information. There exist various methods to obtain such information and the 3D design shape that needs to be formed should be extracted first for getting the necessary thermal forming information. Except well-established shipyards which operate 3D design systems, most of the shipyards only rely on 2.5D design systems and do not have an easy way to obtain 3D surface design data. So in this study, various shipbuilding design systems used by shipyards are investigated and a 3D design surface data extraction method is proposed from those design systems. Then an example is presented to show the extraction of real 3D surface data using the proposed method and computation of thermal forming information using the data.

Comparison of the Quenching Method in Hot Press Forming of Boron Steel (보론강 카메라 케이스 고온성형 공정 비교)

  • Seo, O.S.;Kim, H.Y.;Hong, S.M.;Ryu, S.Y.;Yoon, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.185-189
    • /
    • 2009
  • Recently, ultra high strength products can be manufactured by the hot press forming process of Boron steel in automotive and electronics industries. In order to get high strength, the hot press forming should be accompanied by quenching process inducing phase transformation. There are several types of the hot press forming processes according to the quenching method, water quenching and die quenching, etc. In the study, the process was numerically and physically simulated to compare the two types of quenching processes, and then the strength, hardness and dimensions of the products were compared with try-outs.

A Study on Forming of Al-Zn-Mg-Sc Aluminum Alloy Bolts (Al-Zn-Mg-Sc 알루미늄 합금 볼트 성형에 관한 연구)

  • Yoon, D.J.;Hahm, S.Y.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.447-452
    • /
    • 2012
  • This paper is concerned with forming of Al-Zn-Mg-Sc aluminum alloy bolts, focusing on the effects of heat treatment and age-hardening on the formability and ductile damage evolution. Both experimental and finite element studies were performed. From the experiments, it is observed that the heat treatment or the normalization of Al-Zn-Mg-Sc aluminum alloy increases its formability dramatically resulting in successful bolt forming, while the effects of age-hardening at room temperature on the stress-strain relationship and formability are not very critical. Deformation characteristics such as distribution of effective stress and strain, material flow, and ductile damage evolution during bolt forming are examined using a commercial finite element package, Deform-2D. It should be noted that the extrusion load predicted by the finite element method matches well the experiment results. The finite element predictions on the deformation characteristics support the experimental observations such as fracture of bolt head flange, material flow, and distribution of hardness.

A Study on Correction of the Gear Tooth Profile Error by Finish Roll Forming (전조가공을 이용한 기어의 치형오차수정에 관한 연구)

  • Lyu Sung-Ki;Uematsu Seizo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.159-166
    • /
    • 2005
  • This study deals with the correction of gear tooth profile error by finish roll forming. First, we experimentally confirmed that the tooth profile error is a synthesis of the concave error and the pressure angle error. Since various types of tooth profile errors appear in the experiments, we introduced evaluation parameters for rolling gears to objectively evaluate profile quality. Using these evaluation parameters, we clarified the relationship among the tooth profile error, the addendum modification factor (A. M. factor), and the tool loading force. We verified the character of concave error, pressure angle error, tool loading force and number of cycles of finish roll forming by using a forced displacement method. This study makes clear that tool loading force and number of cycles of finish roll forming are very important factors that affect involute tooth profile error. The results of the experiment and analysis show that the proposed method reduces concave and pressure angle errors.

Process Design of Superplastic Forming/Diffusion Bonding by Using Design of Experiment (실험계획법을 이용한 초소성 성형/확산접합의 공정설계)

  • Song, J.S.;Kang, Y.K.;Hong, S.S.;Kwon, Y.N.;Lee, J.H.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.144-149
    • /
    • 2007
  • The superplastic forming/diffusion bonding(SPF/DB) is widely used in the automotive and aerospace industry because it has great advantage to produce complex, light and strong parts. But the superplastic forming process requires much forming time and generates excessive thinning in the thickness distribution of formed part. It is necessary to minimize trial and error for SPF/DB Process. Finite element analysis using $L_{18}$ orthogonal may table of Taguchi method for 3-Sheet D/B process is carried out. Through the study, effect of process parameters, such as DH region size, thickness and friction coefficient, is evaluated and the optimum condition is derived.

A Study on Roll Wear in the Roll Forming Process (롤포밍 공정에서의 롤 마모에 관한 연구)

  • Kang, Byung-Seok;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1881-1888
    • /
    • 2003
  • This study show a numerical method to predict roll wear in the roll forming process. Archard's wear model was reformulated in an elemental form to predict volume of roll wear and then wear depth on the roll was calculated using the results of finite element analysis. Abrasive wear occurs at contact area in the roll forming process and the results of simulation are compared with experimental data in production line. The wear simulation approach with 3-D FEM program for roll forming process, SHAPE-RF is in good agreement with it in tendency.

A Study on Static-Implicit Forming Analysis of the Magnesium Alloy Sheet (마그네슘 합금 판재의 정적-내연적 성형해석에 관한 연구)

  • Son, Young-Ki;Jung, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.44-49
    • /
    • 2008
  • The characteristic of magnesium alloy is the most light in utility metal, the effect of electromagnetic wave interception, excellent specific strength and absorptiveness of vibration. Although magnesium alloy with above characteristic is a subject matter which is suitable in world-wide tendency of electrical component frame, sheet magnesium alloy is difficult to process. Therefore, forming analysis of sheet magnesium alloy and applying warm-working to process are indispensable. Among Finite element method, the static implicit finite element method is applied effectively to analyze sheet magnesium alloy stamping process, which include the forming stage. In this study, it was focused on the crack, wrinkling and spring back on sheet magnesium alloy stamping by the static implicit analysis. According to this study, the result of simulation will give engineers good information to access the forming technique on sheet magnesium alloy. And its application is being increased especially in the production of electrical component frame for the cost reduction, saving of defective ratio, and improvement of Productivity.

  • PDF

Finite Element Analysis and Experimental Investigation of Non-isothermal Forming Processes for Aluminum-Alloy Sheet Metals (Part2:Analysis) (알루미늄 합금박판 비등온 성형공정의 유한요소 해석 및 실험적 연구 (제2부:해석))

  • 김성민;구본영;금영탁;김종호
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.252-261
    • /
    • 1999
  • The 3-dimensional finite element program is developed to analyze the non-isothermal forming processes of aluminum-alloy sheet metals. Bishop's method is introduced to solve the heat balance and force equilibrium equations. Also, Barlat's non-quadratic anisotropic yield function depicts the planar anisotropy of the aluminum-alloy sheet. To find an appropriate constitutive equation, four different forms are reviewed. For the verification of the reliability of the developed program, the computational try-outs of the non-isothermal cylindrical cupping processes of AL5052-H32 and Al1050-H16 are carried out. As results, the constitutive equation relating to strain and strain-rate, in which the constants are represented by the 5th-degree polynomials of temperature, is in good agreement with measurement. The computational try-outs can predict optimal forming conditions in non-isothermal forming processes.

  • PDF