• Title/Summary/Keyword: Forming effect

Search Result 1,997, Processing Time 0.027 seconds

Effect of Process Parameters in Electromagnetic Forming Apparatus on Forming Load by FEM (유한요소해석을 통한 전자기 성형장비 공정변수의 성형력에 미치는 영향)

  • Noh, Hak Gon;Park, Hyeong Gyu;Song, Woo Jin;Kang, Beom Soo;Kim, Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.733-740
    • /
    • 2013
  • The high-velocity electromagnetic forming (EMF) process is based on the Lorentz force and the energy of the magnetic field. The advantages of EMF include improved formability, wrinkle reduction, and non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for the EMF process. A 2-D axis-symmetric electromagnetic model was used, based on a spiral-type forming coil. In the numerical simulation, an RLC circuit was coupled to the spiral coil to measure various design parameters, such as the system input current and the electromagnetic force. The simulation results show that even though the input peak current levels were at the same level in each case, the forming condition varied due to differences in the frequency of the input current. Thus, the electromagnetic forming force was affected by the input current frequency, which in turn, determined the magnitude of the current density and the magnetic flux density.

Multi-Stage Forming Analysis of a Milli-Component for Improvement of Forming Accuracy (밀리부품의 정밀도 향상을 위한 다단계 성형 및 금형 해석)

  • Yoon, J.H.;Huh, H.;Kim, S.S.;Na, G.H.;Park, H.J.;Choi, T.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.429-434
    • /
    • 2004
  • Manufacturing process for milli components has recently gained researcher's focus with the increasing tendency toward highly integrated and micro-scaled parts for electronic devices. The milli-components need more precise manufacturing process than the conventional manufacturing process since the parts require higher dimensional accuracy than the conventional ones. In order to enhance the forming accuracy and productivity, various forming procedures proposed and studied by many researchers. In this paper, forming analysis of milli-components has been studied with a new micro-former. In modeling of progressive dies, multi-stage forming sequence has been analyzed with finite element analysis by LS-DYNA3D. The analysis proposes the sequential die and part shapes with the corresponding punch force and dimensional accuracy. The analysis also considers the effect of elastic dies on the dimensional accuracy of the formed parts. The analysis result demonstrates that the elastic analysis in the milli-forming process is indispensable for accurate forming analysis. The analysis procedure in the paper will provide good information in design of a new micro-former and milli-component

Surface Quality of Products according to the Material and Coating Condition of the Forming Tool in Incremental Sheet Forming (점진성형공구 코팅처리 및 소재에 따른 성형품 표면품질 분석)

  • H. W. Youn;N. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.360-366
    • /
    • 2023
  • This study is concerned with the surface quality of products according to the material and coating condition of the forming tool in incremental sheet forming. Three forming tools, SKD11 with and without diamond-like-coating (DLC) and polymer tool tip, were used to form conical and pyramidal geometries to take into account the influence of friction between the forming tool and the sheet on the surface quality including geometric accuracy of deformed samples. Each test was performed using SUS304 with a thickness of 0.4 mm according to different incremental depths per lap of 0.5 mm, 1.0 mm, and 1.5 mm for the contour tool path, considering the increase in normal force which is associated with the frictional behavior during local deformation. The surface quality was then investigated through surface roughness measured with KEYENCE VR-6000 and relative strain distribution including deformed shape analyzed with ARGUS which is a non-contact optical strain measurement system. Differences between 3D CAD surfaces and captured geometry from experiments were evaluated to compare the effect of friction on geometric accuracy. From comparisons of experimental results, it was revealed that the polymer-based tool tip can improve surface quality and geometric accuracy by reducing the undesired material flow due to local friction in the increment sheet forming process.

A Study on the Forming Procedure of Consumer Satisfaction from Internet Shopping Experience (인터넷 쇼핑경험에서의 소비자만족 형성과정에 관한 연구)

  • 유현정;김기옥
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.5
    • /
    • pp.179-193
    • /
    • 2002
  • This study aims to examine the forming procedure of consumer satisfaction from Internet shopping experience. Many studies on the satisfaction have primarily focused on the examination of the antecedents of satisfaction along with the expectation-disconfirmation paradigm dominating the former studies. This study has built an Internet shopping expectation-disconfirmation model as to apply the expectation-disconfirmation into the condition of the Internet shopping. The summary of study represented in following. l. The expectation of risk and performance of benefit had a significantly positive effect on the perceived disconfirmation. In addition, an expectation of benefit and performance of risk had a significantly negative effect on the perceived disconfirmation. 2. A performance of risk and performance of benefit not only had a significantly indirect effect, but also a significantly direct effect on the consumer satisfaction. But expectation of risk and expectation of benefit had no significant direct effect on satisfaction. 3. Not only the perceived disconfirmation had a significant positive effect on satisfaction, but also an effect of the perceived disconfirmation on satisfaction(0.472) is larger than that of the performance of risk or performance of benefit. Meaning that, it is desirable for one to apply the expectation-disconfirmation model into the Internet shopping circumstances as much as the off-line markets.

Forming Analysis of Automotive Fender Panel Considering Die Deformation (금형 변형을 고려한 자동차 펜더패널의 성형해석)

  • Song, M.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.387-394
    • /
    • 2006
  • In order to see the effect of die deformation on the forming analysis of sheet metals, the draw-ins, strains, and spring-backs of an automotive fender panels are numerically simulated by considering the die deformation found by the simultaneous structural analysis of press and dies. By coupling the forming analysis and the structural analysis, the die deformation is simultaneously taken into account in the forming process. Furthermore, for the consideration of load difference transferred among the upper die, punch, and blank holder due to the changes in sheet thickness, the gap elements are employed instead of the blank sheet in the structural analysis. The numerical simulation results of an automotive finder draw panel are compared with the measurements. The comparison of the forming and spring-back analysis results between the rigid die and the deformed die shows that the consideration of tool deformation can predict more accurately the forming and spring-back of sheet metals.

Design of Transdermal Delivery System Using New Film-Forming Agents (신규 필름형성제를 이용한 경피흡수제제의 설계)

  • Choi, Yang-Gyu;Kim, Young-So;Kim, Jung-Ju;Sim, Young-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.3
    • /
    • pp.163-169
    • /
    • 2003
  • In order to develop a film-forming transdermal drug delivery system, polyurethane (PU) based on poly(ethylene glycol) and poly(tetramethylene oxide) was synthesized and characterized. The synthesized PU was blended with Gantrez ES 225 (GT) to improve the adhesion property of film-forming agent to the skin. When film-forming gel formulation containing 3% ketoprofen (KP) was applied, transparent thin film was obtained within 5 minutes and adhered to the skin for 8 hours. In vitro percutaneous absortion studies were performed to determine the rate of ketoprofen absorption through guinea pig skin. A prominent effect of limonene on the skin permeability of ketoprofen was observed among the various skin permeation enhancers investigated. Considering mechanica properties of film and skin permeability of ketoprofen, 2% of limonene was optimal content in the film forming transdermal formulation.

Strain Path Dependence of Forming Limits Predicted by Barlat and Lians Non-Quadratic Anisotropic Yield riterion for Sheet Materials

  • Kim, Young-suk;Son, Hyun-sung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.210-216
    • /
    • 2001
  • This paper presents an analytical study that can predict the path-dependent forming limit of anisotropic sheet materials that experience various combinations of strain paths. To predict the forming limit diagrams(FLD), the proposed analytical procedure is performed within the framework of the Marciniak and Kuczynski(M-K) approach by using the Barlat and Lians non-quadratic anisotropic yield criterion and introducing the effect of the existence of a strain gradient over a stretching punch. The predicted path-dependent forming limit of an anisotropic sheet has been compared with the published experimental results. It has been found that the predicted path-dependent forming limits are in good agreement with the experimental data.

  • PDF

Inverse Finite Element Analysis of Autobody Structures with a Direct Mesh Mapping Method for Crash Analysis Considering Forming Effets (직접격자 사상법을 이용한 차체 구조물의 유한요소 역해석 및 성형효과를 고려한 충돌해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.457-464
    • /
    • 2002
  • A finite element inverse analysis is utilized to consider forming effects of an S-rail on the assessment of the crashworthiness with small amount of computation time. A crash analysis can be directly performed after the inverse simulation of a forming process without a smoothing or remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from a sliding constraint surface that is extracted from the die and punch set. Analysis results demonstrate that energy absorption of structures is increased when simulation considers forming effects of thickness variation and work hardening. The finite element inverse analysis is proved to be an effective tool in consideration of forming effects for the crash analysis.

Study on the Calculation of Friction Coefficient for Sheet Metal Forming Analysis (박판 성형해석을 위한 마찰계수의 산정에 관한 연구)

  • Keum, Y.T.;Shim, J.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.27-30
    • /
    • 2007
  • In order to measure the friction coefficient used in sheet metal forming analysis, a friction tester was manufactured and friction tests were performed in various forming conditions. Based on the friction coefficients measured, a mathematical friction model was constructed in terms of lubricant viscosity, blank holding force, punch velocity and sheet roughness. In addition, the effect of the number of forming parameters in the calculation of friction coefficient on the accuracy of sheet metal forming analysis was investigated by comparing the punch loads obtained from the FEM simulation, in which the friction coefficients were determined by a few parameters with the experimental measurement.

  • PDF

Effects of Inductor Shape in Steel Forming Process with High Frequency Induction Heating (유도가열을 이용한 강판성형공정에서 유도코일 형상의 효과)

  • Yang, Young-Soo;Bae, Kang-Yul;Shin, Hee-Yun
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.66-72
    • /
    • 2008
  • Because of high intensity and easy controllability of the heat source, high frequency induction heating has been concerned and studied for the steel forming process in the ship building industry. However, the heating and forming characteristics have to be further properly modelled and analyzed for the process to be utilized with its optimal working parameters. In this study, a modelling with thermo-elasto-plastic analysis is performed using the FEM to study heat flow and deformation of the steel plate during the forming process with the electro-magnetic induction heating. The numerical model is then used to study the effect of the inductor shape on the magnitude of angular deformation of the plate during the forming process. It is revealed that the square shape of inductor induces the largest deformation among the rectangular inductors.