• Title/Summary/Keyword: Forming Roll

Search Result 222, Processing Time 0.024 seconds

Development of a Flexibly-reconfigurable Roll Forming Apparatus for Curved Surface Forming (곡면성형을 위한 비정형롤판재성형 장비 개발)

  • Yoon, J.S.;Park, J.W.;Son, S.E.;Kim, H.H.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.161-168
    • /
    • 2016
  • Sheet metals are often required to be formed into three dimensional curved shapes for use as skin structures. As a result various sheet metal forming methods, such as press die forming, stretch forming, and line heating have been used over the years in industrial production lines. Although they are extensively used in industry, these methods are not suitable for small quantity batch productions. Studies have been conducted to improve or replace these methods with plausible flexible forming technologies. As a part of these studies, we developed a new and more efficient forming device named flexibly-reconfigurable roll forming (FRRF). The current study presents the process development and experimental verification for the applicability of this device. To improve the efficiency of the FRRF apparatus, several hardware components were invented and a suitable operating program was developed using MFC of visual C++. The ways to make the FRRF apparatus fully functional are also described. Sheet metal was formed into three dimensional shapes using the FRRF apparatus and the final products are presented as evidence for the applicability of the developed device.

Fundamental investigation on process design for manufacturing of doubly curved plates using line array roll set (선형 배열 롤 셋을 이용한 이중 곡판 제작을 위한 공정 설계에 관한 기초 연구)

  • Shim, D.S.;Yang, D.Y.;Roh, H.J.;Kim, K.H.;Chung, S.W.;Han, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.400-403
    • /
    • 2008
  • For the effective manufacture of doubly curved metal plates, a line array roll set (LARS) process is proposed. The suggested process utilizes a pair of upper and lower symmetric roll assemblies. In the process, the initial plate is progressed into the final shape in a stepwise or pathwise manner according to the basic principle of the incremental forming process. The deformation proceeds simultaneously in the longitudinal and transverse directions. Moreover, there is a close correlation between the deformation in the longitudinal direction and that in the transverse direction of the plates. Therefore, the finally formed shape in the incremental forming process is strongly dependent upon process conditions, such as the forming path and the forming increment. The manufacturing of arbitrary doubly curved plates with various curvatures is not an easy task because of such complicated behaviors of the plate; thus, the forming schedules for the desired shape should be carefully and accurately designed. In this study, several experiments with the LARS system were carried out for the fundamental investigation on process design for manufacturing of doubly curved plates.

  • PDF

The Study of Roll-forming Technology for UHSS Hydroformed Parts (UHSS 하이드로포밍 개발을 위한 박육관의 롤 포밍 기술 연구)

  • Park, Sungpill;Kwon, Yongjai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • In the automotive industry, it is required to reduce weight of the car and improve fuel efficiency. Competitive pricing is also a very important issue. That's why application of welded steel tube is increasing in order to produce a vehicle with a competitive price. Also, hydroforming technology is asking more and more for thinner tubing to realize to a lighter vehicle design. Steel tube is produced through a multi-stage process called roll forming. In that case, bucking and work hardening should be considered key forming technology is to prevent buckling and minimize work hardening during steel tubing for hydroforming To prevent buckling, it is required to optimize forming process in order to minimize stretching in edge sections and hold tightly cross-section during welding. And to minimize work hardening, it is needed to know the proper process to avoid reforming.

Investigation of Shape Parameters for a Profile with Variable-cross Sections Produced by Flexible Roll Forming (가변롤성형 공정을 이용한 단면이 가변하는 프로파일의 형상변수 분석에 관한 연구)

  • Park, J.C.;Cha, M.W.;Kim, D.G.;Nam, J.B.;Yang, D.Y.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.369-375
    • /
    • 2014
  • Flexible roll forming allows profiles to have variable cross-sections. However, the profile may have some shape errors, such as, warping which is a major defect. The shape error is induced by geometrical deviations in both the concave zone and the convex zone. In the current study, flexible roll forming was modeled with FE simulations to analyze the shape error and the longitudinal strain distribution along the flange section over the profile. A distribution of analytically calculated longitudinal strains was used to develop relationships between the shape error and the longitudinal strain distribution as a function of the defined shape parameters for the profile. The FE simulations showed that the shape error is primarily affected by the deviations between the distribution of analytically calculated longitudinal strain and the longitudinal strain distribution of the profile. The results show that the shape error can be controlled by designing the shape parameters to control the geometrical deviations at the flange section in the transition zones.

A Study on the Application of Line Array Roll Set Process to Shipbuilding Industry (선형 배열 롤 셋 공정의 조선 산업 적용에 관한 연구)

  • Shim, D.S.;Yang, D.Y.;Chung, S.W.;Han, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.289-292
    • /
    • 2009
  • The line array roll set process, as one of many kinds of incremental forming processes, is a continuous process in which a flat metal plate is formed into a singly or doubly curved plate through successive passes of forming rolls. It was found that the curvature level of the formed plates in the previous study was well over the curvature required in shipyards. This fact shows that the LARS method has considerable potential for shipbuilding applications. In a shipbuilding yard, hull forming is an important fabrication process in which flat plates are deformed into singly or doubly curved plates. The major purpose of the present study is to estimate experimentally the general applicability of the line array roll set process for the manufacture of ship hull plates. In this study, the target shapes are selected through investigation of the shape classification of ship hull plates that comprise a certain vessel. Forming processes for twisted shapes are analyzed with the finite element method (FEM). Finally, the results of experimental work for two types of target shapes are presented.

  • PDF

Evaluation of Tube Hydroformability (Tube Hydroforming 공정의 성형성 평가)

  • 김영석;조흥수;박춘달;김영삼;조완제
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.604-614
    • /
    • 2000
  • In this paper, the mechanical characteristics and fundamental mechanism of a roll-formed tube during the hydroforming process are investigated in order to obtain the ewly localization of the tube hydroforming skills which are the core production techniques for the super light weight and high safety of the car body. Also, the theoretical influences of the material variables and the processes on the formability in the tube hydroforming are studied. In addition, the techniques to evaluate the forming limit of the bulging process of a tube are developed.

  • PDF

A Study on the Roll Forming Characteristics of an Asymmetric Roller with a 6 mm Steel Plate using the Finite Element Method (유한요소법을 사용한 6 mm 후판의 비대칭 롤포밍 성형변형특성에 관한 연구)

  • Kim, Seongsoo;Lee, Gyeonghwan;Chung, Hanshik;Kim, Dong-Uk;Lee, Je-Hyun;Choi, Heekyu
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.494-499
    • /
    • 2009
  • As a novel method to produce a steel beam with 6mm thickness for buildings, a continuous roll forming process is reported. The roll shape is asymmetric and consists of 6 pairs of rollers to bend the steel plate from $0^{\circ}$ to $90^{\circ}$. Results obtained upon application of the roll forming process showed that the angle of the section plate is $90^{\circ}$. However, defects such as bowing and camber as high as 3.2 [$^{\circ}/m$] were observed. A FEM (Finite Element Method) analysis was applied to investigate the causes of the results for the region between rollers no. 5 and no. 6. The results of a FEM simulation of deformation and stress showed that there are some strong peak stresses on the upper surface and bottom surface of the material. The positions of the peak stresses did not show a correspondence between the upper and bottom surfaces. Thus, the defects in the process of roll forming with a 6 mm thick steel plate occur by the unbalanced stresses between the upper surface and bottom surface of the material in this study.

An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process (점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향)

  • 윤석준;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.122-128
    • /
    • 2004
  • In order to make a doubly-curved sheet metal effectively, a sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It mainly affects the generation of curvature in its own direction with the forming depth and the thickness of the material.

Tube Hydroforming Process Design of Torsion Beam type Rear Suspension Considering Durability (내구성을 고려한 토션빔형 후륜 현가장치의 튜브 하이드로포밍 공정 설계)

  • Lim, H.T.;Oh, I.S.;Ko, J.M.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.201-209
    • /
    • 2007
  • Generally, the forming process of suspension system parts have been considered only considered with the formability and have not been considered with the durability of suspension system. But the durability of suspension system is very important characteristic for the dynamic performance of vehicle. Therefore, the suspension system should be manufactured to consider the durability as well as the formability. This paper is about an optimum forming process design with the effect of section properties to consider the roll durability of torsion beam type suspension. In order to determine the tube hydroforming process for the satisfaction the roll durability, the stamping and hydroforming simulation by finite element method were performed. And the results from finite element analysis and roll durability examination showed the tube hydroforming process of torsion beam is optimized as satisfying the durability performance.

Design of intermediate shape in line array roll set (LARS) process (선형 배열 롤 셋 공정에서의 중간 형상 설계)

  • Shim, D.S.;Yang, D.Y.;Chung, S.W.;Han, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.215-219
    • /
    • 2009
  • For the effective manufacture of doubly curved metal plates, a line array roll set (LARS) process is proposed. The suggested process utilizes a pair of upper and lower symmetric roll assemblies. In the process, the initial plate is progressed into the final shape in a stepwise or pathwise manner according to the basic principle of the incremental forming process. In this work, the intermediate shape which is closest to a final shape is proposed to fabricate the desired shape effectively in design of forming schedule. The intermediate shape has homogeneous curvature in a longitudinal and transverse direction so that it can be fabricated easily without complicated controls of rolls in the roll set. The method of approximation using genetic algorithm is proposed and applied to some actual ship hulls to evaluate the efficiency of the algorithm.

  • PDF