• Title/Summary/Keyword: Forming Process

Search Result 3,277, Processing Time 0.024 seconds

Effects of Fe and Cu Addition on the Microstructure and Tensile Properties of Al-Si-Mg Alloy for Compound Casting (복합주조용 Al-Si-Mg합금의 미세조직 및 인장성질에 미치는 Fe 및 Cu 첨가의 영향)

  • Kim, Jeong-Min;Jung, Ki-Chae;Kim, Chae-Young;Shin, Je-sik
    • Journal of Korea Foundry Society
    • /
    • v.41 no.1
    • /
    • pp.3-10
    • /
    • 2021
  • In the compound casting between the aluminum alloy and the cast iron, the iron component may be dissolved from the cast iron during the process and mixed into the aluminum melt, thereby forming various iron-containing intermetallic compounds and significantly deteriorating the tensile properties of the aluminum alloy. On the other hand, unlike Fe, which is added as an impurity, Cu is added to improve the mechanical properties of the aluminum alloy. In this study, the change in microstructure and tensile properties of aluminum alloys due to the addition of Fe and Cu was investigated. A large amount of iron-containing compounds such as coarse Al5FeSi phases were formed when the iron content was 1% or more, and the tensile properties were significantly reduced. In the case of the aluminum alloy to which Cu was added, an Al2Cu phase was additionally formed and the tensile strength was clearly improved.

Effect of Annealing Temperature on the Durability of PEMFC Polymer Membrane (PEMFC 고분자막의 어닐링 온도가 내구성에 미치는 영향)

  • Lee, Mihwa;Oh, Sohyeong;Park, Yujun;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.7-11
    • /
    • 2022
  • In the membrane forming process of a proton exchange membrane fuel cell (PEMFC), drying and annealing heat treatment processes are required for performance and durability. In this study, the optimal annealing temperature for improving the durability of the polymer membrane was studied. It was annealed in the temperature range of 125~175 ℃, and thermal stability and hydrogen permeability were measured as basic data of durability at each annealing temperature. The electrochemical durability was analyzed by Fenton reaction and open circuit voltage (OCV) holding. The annealing temperature of 165 ℃ was the optimal temperature in terms of thermal stability and hydrogen permeability. In the Fenton reaction, the fluorine emission rate of the membrane annealed at 165 ℃ was the lowest, and the lifespan of the membrane annealed at 165 ℃ was the longest in the OCV holding experiment, confirming that 165 ℃ was the optimal temperature for the durability of the polymer membrane.

A study on the construction of the quality prediction model by artificial neural intelligence through integrated learning of CAE-based data and experimental data in the injection molding process (사출성형공정에서 CAE 기반 품질 데이터와 실험 데이터의 통합 학습을 통한 인공지능 품질 예측 모델 구축에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 2021
  • In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.

Yield Functions Based on the Stress Invariants J2 and J3 and its Application to Anisotropic Sheet Materials (J2 와 J3 불변량에 기초한 항복함수의 제안과 이방성 판재에의 적용)

  • Kim, Y.S;Nguyen, P.V.;Kim, J.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.214-228
    • /
    • 2022
  • The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a novel anisotropic yield function useful for describing the plastic behavior of various anisotropic sheets. The proposed yield function includes the anisotropic version of the second stress invariant J2 and the third stress invariant J3. The anisotropic yield function newly proposed in this study is as follows. F(J2)+ αG(J3)+ βH (J2 × J3) = km The proposed yield function well explains the anisotropic plastic behavior of various sheets by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to aluminum sheet shows symmetrical yielding behavior and to pure titanium sheet shows asymmetric yielding behavior, it was shown that the yield curve and yield behavior of various types of sheet materials can be predicted reasonably by using the proposed new yield anisotropic function.

Characteristics of Organic Solar Cell having an Electron Transport Layer co-Deposited with ZnO Metal Oxide and Graphene using the Cyclic Voltammetry Method (순환전류법을 이용해 ZnO 금속산화물과 Graphene을 동시에 제막한 전자수송층을 갖는 유기태양전지의 특성)

  • Ahn, Joonsub;Han, Eunmi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.71-75
    • /
    • 2022
  • Graphene oxide was stirred with a ZnCl2:NaCl electrolyte and electrochemically coated by cyclic voltammetry to simplify the electron transpfer layer film forming process for organic solar cells and to fabricate an organic solar cell having it. The device structure is FTO/ZnO:graphene/P3HT:PCBM/PEDOT:PSS/Ag. Morphology and chemical properties of ETL were confirmed by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. As a result of XPS measurement, ZnO metal oxide and carbon bonding were simultaneously confirmed, and ZnO and graphene peaks were confirmed by Raman spectroscopy. The electrical characteristics of the manufactured solar cell were specified with a solar simulator, and the ETL device coated twice at a rate of 0.05 V/s showed the highest photoelectric conversion efficiency of 1.94%.

System for Supporting the Decision about the Possibility of Concluding the Civil Law Agreements for Medical, Therapeutic and Dental Services

  • Hnatchuk, Yelyzaveta;Hovorushchenko, Tetiana;Shteinbrekher, Daria;Kysil, Tetiana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.155-164
    • /
    • 2022
  • The review of known decisions showed that currently there are no systems and technologies for supporting the decision about the possibility of concluding the civil law agreements for medical, therapeutic and dental services. The paper models the decision-making support process on the possibility of concluding the civil law agreements for medical, therapeutic and dental services, which is the theoretical basis for the development of rules, methods and system for supporting the decision about the possibility of concluding the civil law agreements for medical, therapeutic and dental services. The paper also developed the system for supporting the decision about the possibility of concluding the civil law agreements for medical, therapeutic and dental services, which automatically and free determines the possibility or impossibility of concluding the corresponding civil law agreement for the provision of a corresponding medical service. In the case of formation of a conclusion about the possibility of concluding the agreement, further conclusion and signing of the corresponding agreement takes place. In the case of forming a conclusion about the impossibility of concluding the agreement, a request is made for finalizing the relevant agreement for the provision of the relevant medical service, indicating the reasons for the impossibility of concluding the agreement - missing essential conditions in the agreement. After finalization, the agreement can be analyzed again by the developed system for supporting the decision.

The Formation of Managerial Competence of the Future Head of Preschool Education by Means of Information and Communication Technologies

  • Nataliia, Dudnyk;Valentyna, Kryvda;Svitlana, Popychenco;Nelia, Skrypnyk;Tetiana, Duka
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.287-299
    • /
    • 2022
  • The article deals with the formation of managerial competence of the future head of preschool education institution by means of information and communication technology as a prerequisite for his ability to act competently and objectively evaluate actions and understand the interaction of forms and content of preschool education. The article aimed to study the effectiveness of information and communication technologies in the formation of managerial competence of the future head of preschool education institution. To achieve the objectives, the methods of comparative and systematic analysis were used to compare different views on the problem under study, namely, the formation of managerial competence of the future head of preschool education institution by means of information and communication technologies. The authors of the article determined that the use of information and communication technologies in the preparation of future heads of preschool educational institutions is of great importance and is an indicator in the structure of managerial competence. The priority directions of the use of various software products for the study of the modern Ukrainian language, methods of teaching the Ukrainian language contribute to the intensification of learning material. It is noted that the current state of development of information technologies and their widespread use in education satisfies the requirements of the objectivity of the assessment obtained the quality of the control process of forming the managerial competence of the future leader in the context of the general problems of pre-school education. It is noted that the means of information and communication technologies play a leading role in creating new educational policies and projects, as they motivate the way of access to knowledge.

Fabrication of surface-enhanced Raman scattering substrate using black silicon layer manufactured through reactive ion etching (RIE 공정으로 제조된 블랙 실리콘(Black Silicon) 층을 사용한 표면 증강 라만 산란 기판 제작)

  • Kim, Hyeong Ju;Kim, Bonghwan;Lee, Dongin;Lee, Bong-Hee;Cho, Chanseob
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.267-272
    • /
    • 2021
  • In this study, Ag was deposited to investigate its applicability as a surface-enhanced Raman scattering substrate after forming a grass-type black silicon structure through maskless reactive ion etching. Grass-structured black silicon with heights of 2 - 7 ㎛ was formed at radio-frequency (RF) power of 150 - 170 W. The process pressure was 250 mTorr, the O2/SF6 gas ratio was 15/37.5, and the processing time was 10 - 20 min. When the processing time was increased by more than 20 min, the self-masking of SixOyFz did not occur, and the black silicon structure was therefore not formed. Raman response characteristics were measured based on the Ag thickness deposited on a black silicon substrate. As the Ag thickness increased, the characteristic peak intensity increased. When the Ag thickness deposited on the black silicon substrate increased from 40 to 80 nm, the Raman response intensity at a Raman wavelength of 1507 / cm increased from 8.2 × 103 to 25 × 103 cps. When the Ag thickness was 150 nm, the increase declined to 30 × 103 cps and showed a saturation tendency. When the RF power increased from 150 to 170 W, the response intensity at a 1507/cm Raman wavelength slightly increased from 30 × 103 to 33 × 103 cps. However, when the RF power was 200 W, the Raman response intensity decreased significantly to 6.2 × 103 cps.

Acquisition of Parameters for Impact Damage Analysis of Sheet Molding Compound Based on Artificial Neural Network (인공신경망 기반 SMC 복합재료의 충돌 손상 해석을 위한 파라메터 획득)

  • Lee, Sang-Cheol;Kim, Jeong
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.115-122
    • /
    • 2021
  • SMC(Sheet molding compound) composite is mainly used for forming of vehicle's body. Considering the car accident, it is essential to research the impact behavior and characteristics of materials. It is difficult to identify them because the impact process is completed in a short time. Therefore, the impact damage analysis using FE(finite element) model is required for the impact behavior. The impact damage analysis requires the parameters for the damage model of SMC composite. In this paper, ANN(artificial neural network) technique is applied to obtain the parameters for the damage model of SMC composite. The surrogate model by ANN was constructed with the result in LS-DYNA. By comparing the absorption energy in drop weight test with the result of ANN model, the optimized parameters were obtained. The acquired parameters were validated by comparing the results of the experiment, the FE model and the ANN model.

Study on Korean Seawater Characterization and Crystallization for Seawater Desalination Brine Treatment (해수담수화 농축수 처리를 위한 한국 해수 특성 및 결정화 연구)

  • Jeong, Sanghyun;Eiff, David von;Byun, Siyoung;Lee, Jieun;An, Alicia Kyoungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.442-448
    • /
    • 2021
  • Seawater desalination is a technology through which salt and other constituents are removed from seawater to produce fresh water. While a significant amount of fresh water is produced, the desalination process is limited by the generation of concentrated brine with a higher salinity than seawater; this imposes environmental and economic problems. In this study, characteristics of seawater from three different locations in South Korea were analyzed to evaluate the feasibility of crystallization to seawater desalination. Organic and inorganic substances participating in crystal formation during concentration were identified. Then, prediction and economic feasibility analysis were conducted on the actual water flux and obtainable salt resources (i.e. Na2SO4) using membrane distillation and energy-saving crystallizer based on multi-stage flash (MSF-Cr). The seawater showed a rather low salinity (29.9~34.4 g/L) and different composition ratios depending on the location. At high concentrations, it was possible to observe the participation of dissolved organic matter and various ionic substances in crystalization. When crystallized, materials capable of forming various crystals are expected. However, it seems that different salt concentrations should be considered for each location. When the model developed using the Aspen Plus modular was applied in Korean seawater conditions, relatively high economic feasibility was confirmed in the MSF-Cr. The results of this study will help solve the environmental and economic problems of concentrated brine from seawater desalination.