• Title/Summary/Keyword: Forming Limit Diagram(FLD)

Search Result 46, Processing Time 0.031 seconds

Forming Limit Prediction in Tube Hydroforming Processes by using the FEM and ELSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.92-96
    • /
    • 2005
  • Among the failure modes which can be occurred in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, the path-dependent limitation of FLD makes the application to hydroforming process, where strain path is no longer linear throughout forming process, more careful. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out Ihe state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified with a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the farming severity in hydroforming processes.

  • PDF

Prediction of the Forming Limit Diagram for AZ31B Sheet at Elevated Temperatures Considering the Strain-rate Effect - II (변형률속도 효과를 고려한 AZ31B 판재의 온간 성형한계도 예측 - II)

  • Choi, S.C.;Kim, H.Y.;Kim, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.285-288
    • /
    • 2009
  • The purpose of this study is to predict the forming limit diagram (FLD) of strain-rate sensitive materials on the basis of the Marciniak and Kuczynski (M-K) theory. The strain-rate effect is taken into consideration in such a way that the stress-strain curves for various strain-rates are inputted into the formulation as point data, not as curve-fitted models such as power function. Tensile tests and R-value tests were carried out at several levels of temperature and strain-rate from $25^{\circ}C$ to $300^{\circ}C$ and 0.16 to 0.00016/s, respectively to obtain the mechanical properties of AZ31B magnesium alloy sheet. The FLD of this material was experimentally obtained by limit dome height tests with the punch velocity of 0.1 and 1.0 mm/s at $250^{\circ}C$. The M-K theory-based FLD predicted using Yld2000-2d yield criterion was compared with the experimental results.

  • PDF

Forming Limit Diagram Prediction for Ultra-Thin Ferritic Stainless Steel Using Crystal Plasticity Finite Element Method (결정소성 유한요소해석에 의한 극박 스테인리스강의 성형한계선도 예측)

  • Bong, H.J.;Lee, M.G.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.144-149
    • /
    • 2017
  • In order to characterize the macroscopic mechanical response of ultra-thin (0.1 mm thick) ferritic stainless steel sheet at various loading paths, a crystal plasticity finite element method (CP-FEM) was introduced. The accuracy of the prediction results was validated by comparing with the experimental data. Based on the results, the forming limit diagram (FLD) was predicted using a modified Marchinicak-Kuczinski model coupled to a non-quadratic anisotropic yield function, namely, Yld2000-2d. The predicted FLD was found to be in good agreement with the experimental data.

Some Remarks on the Experiment and Finite Element Analysis to Evaluate to Forming Limit of Sheet Metals (금속판재의 성형성 평가를 위한 실험 및 유한요소해석에 관한 고찰)

  • 곽인구;신용승;김형종;김헌영
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.379-388
    • /
    • 2000
  • This study aims to examine the influence of experimental and numerical factors on the results of the test and finite element simulation to evaluate the formability of sheet metals. The stretch-forming test with a hemispherical punch is carried out to obtain the limiting dome height (LDH) and forming limit diagram (FLD) for several kinds of aluminium and steel sheet. The results of the LDH and FLD tests are analysed to find any correlation with the uniaxial tensile properties. It proves that the size of the prescribed grid has great influence on the measured value of strain. The finite element analysis of the punch stretching process is also carried out and the result is compared with the experimental data. The influence of the numerical parameters such as friction coefficient, element size and anisotropy model on the simulation results tms out to be very considerable.

  • PDF

Practical Method for FLD of Mg Alloy Sheet using FEM (유한요소해석을 이용한 마그네슘 합금 판재 성형한계도의 실용적 작성 방법)

  • Kim, K.T.;Lee, H.W.;Kim, S.H.;Song, J.H.;Lee, G.A.;Choi, S.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.183-185
    • /
    • 2008
  • Forming Limit Diagram(FLD) is a representative tool for evaluating formability of sheet metals. This paper presents a methodology to determine the FLD using Finite Element Method. For predicting the forming limits numerically. Previous methods such as using the thickness strain or the ductile fracture criterion are limited at plane strain domain. These results suggest that behavior of the void growth in sheet metals is different from real one. In contrast to previous methods, a more exact model which takes void growth into account is used. This result agrees with the experimental result qualitatively.

  • PDF

Experimental Investigation on Forming Limit of Laser Welded Blank Sheets (레이저 합체박판의 성형한계평가 실험에 관한 연구)

  • 박승우;구본영;금영탁;강수영;류석종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.72-75
    • /
    • 1997
  • In this paper, the forming limits of laser welded blank sheets are introduced, obtained from a tensile test and a hemispherical dome punch test. Especially, the forming limit diagram(FLD) on the heat affected zone with a width 2.54mm is emphasized. Also, the experimental experiences in finding specific strain conditions are discussed.

  • PDF

Forming Limits Diagram of AZ31 Alloy Sheet with the Deformation Mode (AZ31 합금 판재의 변형모드에 따른 성형한계에 관한 연구)

  • Jung, J.H.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.473-480
    • /
    • 2008
  • Sheet metal forming of Mg alloy is usually performed at elevated temperature because of the low formability at room temperature. Therefore, strain rates affected with the forming temperature and speed must be considered as important factor about formability. Effects of process parameters such as various temperatures and forming speeds were investigated in circular cup deep drawing. From the experimental results, it is known that LDR (Limit Drawing Ratio) increase as the strain rate increase. On the contrary, the FLD (Forming Limit Diagram) shows lower value as faster strain rate. Therefore, anisotropy values are investigated according to the temperature and strain rates at each forming temperature. R-values also represent higher value as faster strain rate. It is known that the formability can be different with the deformation mode on warm forming of AZ31 alloy sheet.

The Improvement of Formability using the Polar-coordinate FLD with Strain Path Independence (경로의존성 없는 극좌표계 성형한계도를 이용한 판재 성형성 향상 기술)

  • Bae, M.K.;Hong, S.H.;Choi, K.Y.;Yoon, J.W.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.348-353
    • /
    • 2015
  • The PEPS(Polar-coordinated Effective Plastic Strain) FLD(Forming Limit Diagram), a new type of FLD based on a polar representation of the EPS(Effective Plastic Strain), appears to be an effective solution to the problem of non-linear strain path effects. This method has the advantages of the familiar strain-based diagram for linear loading, but without the strain-hardening limitations of the stress-based diagram, or non-intuitive aspects of alternate Cartesian diagrams based on effective plastic strain. In the current study, the PEPS FLD was applied to the development process of an aluminum automobile-body panel, including the necking or crack prediction, die design, and die modification. As a result, the PEPS FLD provided improved formability of aluminum sheet as compared to deriving the potential formability with non-linearity.

Tool Temperatures to Maximize the Warm Deep-drawability of AZ31B Sheets (AZ31B 판재의 온간 디프드로잉 성형성 극대화를 위한 금형 온도)

  • Choi, S.C.;Kim, H.J.;Kim, H.Y.;Hong, S.M.;Shin, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.66-70
    • /
    • 2008
  • In this study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. Tensile tests and limit dome height tests were rallied out at several temperatures between $25^{\circ}C$ and $300^{\circ}C$ to obtain the mechanical properties and forming limit diagram (FLD). The FLD-based criterion considering the strain-path and the blank temperature was used to predict the forming limit in a deep-drawing process of cross-shaped cup by finite element analysis. This criterion proved to be very useful in determining the optimal process conditions such as blank shape, punch velocity, minimum comer radius, fillet size, and so on, through the comparison between FEA and experimental data. In particular, the temperature of each tool that provided the best formability of the blank was determined by coupled temperature-deformation analyses. A practical method that can greatly reduce the forming time by increasing the punch speed during the forming process was suggested.

  • PDF