• Title/Summary/Keyword: Formic Acid Concentration

Search Result 107, Processing Time 0.026 seconds

Effect of Methanol on Cultured Neuronal and Glial Cells on Rat Hippocampus (Methanol이 배양된 흰쥐 해마의 신경세포 및 신경교 세포의 성장에 미치는 영향)

  • 이정임;조병채;배영숙;이경은
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.203-211
    • /
    • 1996
  • Methanol has been widely used as an industrial solvent and environmental exposure to methanol would be expected to be increasing. In humans, methanol causes metabolic acidosis and damage to ocular system, and can lead to death in severe and untreated case. Clinical symptoms are attributed to accumulation of forrnic acid which is a metabolic product of methanol. In humans and primates, formic acid is accumulated after methanol intake but not in rodents due to the rapid metabolism of methanol. Neverthless, the developmental and reproductive toxicity were reported in rodents. Previous reports showed that perinatal exposure to ethanol produces a variety of damage in human central nervous system by direct neurotoxicity. This suggests that the mechanism of toxic symptoms by methanol in rodents might mimic that of ethanol in human. In the present study I hypothesized that methanol can also induce toxicity in neuronal cells. For the study, primary culture of rat hippocampal neurons and glias were empolyed. Hippocampal cells were prepared from the embryonic day-17 fetuses and maintained up to 7 days. Effect of methanol (10, 100, 500 and 1000 mM) on neurite outgrowth and cell viability was investigated at 0, 18 and 24 hours following methanol treatment. To study the changes in proliferation of glial cells, protein content was measured at 7 days. Neuronal cell viability in culture was not altered during 0-24 hours after methanol treatment. 10 and 100 mM methanol treatment significantly enhanced neurite outgrowth between 18-24 hours. 7-day exposure to 10 or 100 mM methanol significantly increased protein contents but that to 1000 mM methanol decreased in culture. In conclusion, methanol may have a variety of effects on growing and differentiation of neurons and glial cells in hippocampus. Treatment with low concentration of methanol caused that neurite outgrowth was enhanced during 18-24 hours and the numbers of glial cell were increased for 7 days. High concentration of methanol brought about decreased protein contents. At present, the mechanism responsible for the methanol- induced enhancement of neurite outgrowth is not clear. Further studies are required to delineate the mechanism possibly by employing molecular biological techniques.

  • PDF

Activation of persulfate by UV and Fe2+ for the defluorination of perfluorooctanoic acid

  • Song, Zhou;Tang, Heqing;Wang, Nan;Wang, Xiaobo;Zhu, Lihua
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.185-197
    • /
    • 2014
  • Efficient defluorination of perfluorooctanoic acid (PFOA) was achieved by integrating UV irradiation and $Fe^{2+}$ activation of persulfate ($S_2O{_8}^{2-}$). It was found that the UV-$Fe^{2+}$, $Fe^{2+}-S_2O{_8}^{2-}$, and UV-$S_2O{_8}^{2-}$ processes caused defluorination efficiency of 6.4%, 1.6% and 23.2% for PFOA at pH 5.0 within 5 h, respectively, but a combined system of UV-$Fe^{2+}-S_2O{_8}^{2-}$ dramatically promoted the defluorination efficiency up to 63.3%. The beneficial synergistic behavior between $Fe^{2+}-S_2O{_8}^{2-}$ and UV-$S_2O{_8}^{2-}$ was demonstrated to be dependent on $Fe^{2+}$ dosage, initial $S_2O{_8}^{2-}$ concentration, and solution pH. The decomposition of PFOA resulted in generation of shorter-chain perfluorinated carboxylic acids (PFCAs), formic acid and fluoride ions. The generated PFCAs intermediates could be further defluorinated by adding supplementary $Fe^{2+}$ and, $S_2O{_8}^{2-}$ and re-adjusting solution pH in later reaction stage. The much enhanced PFOA defluorination in the UV-$Fe^{2+}-S_2O{_8}^{2-}$ system was attributed to the fact that the simultaneous employment of UV light and $Fe^{2+}$ not only greatly enhanced the activation of $S_2O{_8}^{2-}$ to form strong oxidizing sulfate radicals ($SO{_4}^{\cdot-}$), but also provided an additional decarboxylation pathway caused by electron transfer from PFOA to in situ generated $Fe^{3+}$.

Decomposition of Aqueous Anatoxin-a Using Underwater Dielectric Barrier Discharge Plasma Created in a Porous Ceramic Tube (다공성 세라믹관내에서 생성되는 수중 유전체 장벽 방전 플라즈마를 이용한 아나톡신-a의 분해)

  • JO, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.167-177
    • /
    • 2016
  • This work investigated the decomposition of aqueous anatoxin-a originated from cyanobacteria using an underwater dielectric barrier discharge plasma system based on a porous ceramic tube and an alternating current (AC) high voltage. Plasmatic gas generated inside the porous ceramic tube was uniformly dispersed in the form of numerous bubbles into the aqueous solution through the micro-pores of the ceramic tube, which allowed an effective contact between the plasmatic gas and the aqueous anatoxin-a solution. Effect of applied voltage, treatment time and the coexistence of nutrients such as $NO_3{^-}$, $H_2PO_4{^-}$ and glucose on the decomposition of anatoxin-a was examined. Chemical analyses of the plasma-treated anatoxin-a solution using liquid chromatography-mass spectrometry (LC-MS) and ion chromatography (IC) were performed to elucidate the mineralization mechanisms. Increasing the voltage improved the anatoxin-a decomposition efficiency due to the increased discharge power, but the energy required to remove a given amount of anatoxin-a was similar, regardless of the voltage. At an applied voltage of 17.2 kV (oxygen flow rate: $1.0L\;min^{-1}$), anatoxin-a at an initial concentration of $1mg\;L^{-1}$ (volume: 0.5 L) was successfully treated within 3 min. The chemical analyses using LC-MS and IC suggested that the intermediates with molecular weights of 123~161 produced by the attack of plasma-induced reactive species on anatoxin-a molecule were further oxidized to stable compounds such as acetic acid, formic acid and oxalic acid.

Determination of Non-Steroidal Anti-Inflammatory Drugs in Human Urine Sample using HPLC/UV and Three Phase Hollow Fiber-Liquid Phase Microextraction (HF-LPME)

  • Cha, Yong Byoung;Myung, Seung-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3444-3450
    • /
    • 2013
  • Three phase hollow fiber-liquid phase microextraction (HF-LPME), which is faster, simpler and uses a more environmentally friendly sample-preparation technique, was developed for the analysis of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in human urine. For the effective simultaneous extraction/concentration of NSAIDs by three phase HF-LPME, parameters (such as extraction organic solvent, pH of donor/acceptor phase, stirring speed, salting-out effect, sample temperature, and extraction time) which influence the extraction efficiency were optimized. NSAIDs were extracted and concentrated from 4 mL of aqueous solution at pH 3 (donor phase) into dihexyl ether immobilized in the wall pores of a porous hollow fiber, and then extracted into the acceptor phase at pH 13 located in the lumen of the hollow fiber. After the extraction, 5 ${\mu}L$ of the acceptor phase was directly injected into the HPLC/UV system. Simultaneous chromatographic separation of seven NSAIDs was achieved on an Eclipse XDB-C18 (4.6 mm i.d. ${\times}$ 150 mm length, 5 ${\mu}m$ particle size) column using isocratic elution with 0.1% formic acid and methanol (30:70) at a HPLC-UV/Vis system. Under optimized conditions (extraction solvent, dihexyl ether; $pH_{donor}$, 3; $pH_{acceptor}$, 13; stirring speed, 1500 rpm; NaCl salt, 10%; sample temperature, $60^{\circ}C$; and extraction time, 45 min), enrichment factors (EF) were between 59 and 260. The limit of detection (LOD) and limit of quantitation (LOQ) in the spiked urine matrix were in the concentration range of 5-15 ng/mL and 15-45 ng/mL, respectively. The relative recovery and precision obtained were between 58 and 136% and below 15.7% RSD, respectively. The calibration curve was linear within the range of 0.015-0.96 ng/mL with the square of the correlation coefficient being more than 0.997. The established method can be used to analyse of NSAIDs of low concentration (ng/mL) in urine.

A Fast Determination of Globotriaosylsphingosine in Plasma for Screening Fabry Disease Using UPLC-ESI-MS/MS

  • Yoon, Hye-Ran
    • Mass Spectrometry Letters
    • /
    • v.6 no.4
    • /
    • pp.116-119
    • /
    • 2015
  • Globotriaosylsphingosine (lyso-Gb3) is considered as one of the biological marker for Fabry disease. To date, a reliable biomarker that reflects disease severity and progression has not been discovered to guide the management of Fabry disease. A new method included a simple protein precipitation with acetonitrile in 100 μL of plasma following analyte separation on an Phenomenex Kintex- C18 column using a gradient elution (0.1% formic acid in 5-90% acetonitrile). Total run time was within 12 min including sample preparation and MS/MS analysis. The limit of detection and limit of quantitation were 1 ng/mL and 2 ng/mL, respectively. The calibration curve was linear over the concentration range of 2.0-200.0 ng/mL (r2 = 0.9999). Inter-day accuracy and precision at 7 level were 93.4-100.7% with RSD of 0.55-5.97%. Absolute recovery was 97.6-98.6%. The method was applied to human and mice plasma, proved the suitability for quantification of lyso-Gb3 for screening, diagnosis and therapeutic monitoring of Fabry disease patients.

Quantitative Analysis of Seven Triazine Herbicides by On-Line Micellar Electrokinetic Chromatography-Electrospray Ionization Mass Spectrometry

  • Kang, Seong-Ho;Shin, Dae-Ho;Chang, Yoon-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1319-1323
    • /
    • 2003
  • This paper presents a successful demonstration of the on-line coupling of MEKC (micellar electrokinetic chromatography) to ESIMS (electrospray ionization mass spectrometry) for the quantitative analysis of seven s-triazine herbicides. The on-line MEKC-ESIMS was used to determine the structure of CE-separated peaks of seven triazine herbicides. The mixture of triazine herbicides was separated in a 20 mM sodium borate buffer (pH 8.5) containing 15 mM sodium dodecylsulfate (SDS) by using a bare fused-silica capillary. Electrospray ionization mass spectrometer was operated in the positive-ion mode when the mass spectra of seven triazine herbicides were observed from each peak, and the solution of water-methanol-formic acid (50/49/1 v/v/v) was used as a sheath liquid. The effects of SDS concentration, the run buffer pH, and the electric field on the separation of seven s-triazine herbicides were investigated. The MEKC-ESIMS detection showed 5 to 10 times higher sensitivity compared to the MEKC-UV detection. In addition, it did not need any pretreatment step.

Liquid Chromatography-tandem Mass Spectrometry for Quantification of Dioscin in Rat Plasma

  • Kong, Tae Yeon;Ji, Hye Young;Choi, Sang-Zin;Son, Miwon;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.55-58
    • /
    • 2013
  • Dioscin is a biologically active steroidal saponin with anticancer and hepatoprotective effects. A rapid, selective, and sensitive liquid chromatographic method with electrospray ionization tandem mass spectrometry was developed for the quantification of dioscin in rat plasma. Dioscin was extracted from rat plasma using ethyl acetate at acidic pH. The analytes were separated on a Halo C18 column using gradient elution of acetonitrile and 0.1% formic acid and detected by tandem mass spectrometry in selected reaction monitoring mode. The standard curve was linear ($r^2$ = 0.998) over the concentration range of 1-100 ng/mL. The lower limit of quantification was 1.0 ng/mL using 50 ${\mu}L$ of plasma sample. The coefficient of variation and relative error for intra- and inter-assay at four QC levels were 1.3 to 8.0% and -5.4 to 10.0%, respectively. This method was applied successfully to the pharmacokinetic study of dioscin after oral administration of dioscin at a dose of 29.2 mg/kg in male Sprague-Dawley rats.

Multi-residue Pesticide Analysis in Cereal using Modified QuEChERS Samloe Preparation Method (곡물류 중 잔류농약 다성분 분석을 위한 개선된 QuEChERS 시료 정제법의 개발)

  • Yang, In-Cheol;Hong, Su-Myeong;Kwon, Hye-Young;Kim, Taek-Kyum;Kim, Doo-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.314-334
    • /
    • 2013
  • This study explored an efficient modified Quick, Easy, Cheap, Effective, Rugged and safe (QuEChERS) method combined with liquid chromatography-electrospray ionization with tandem mass spectrometric detection for the analysis of residues of 76 pesticides in brown rice, barley and corn including acidic sulfonylurea herbicides. Formic acid (1%) acid in acetonitrile and dispersive solid phase extractions used for extraction of pesticides and clean-up of the extract respectively. Two fortified spikes at 50 and 200 ng $g^{-1}$ levels were performed for recovery test. Mean recoveries of majority of pesticides at two spike levels ranged from 73.2 to 132.2, 80.9 to 136.8, 66.6 to 143.5 for brown rice, barley and corn respectively with standard error (CV) less than 10%. Good linearity of calibration curves were achieved with $R^2$ > 0.9907 within the observed concentration ranged. The modified method also provided satisfactory results for sulfonylurea herbicides. The method was applied to the determination of residues of target pesticides in real samples. A total of 26 pesticides in 36 out of 98 tasted samples were observed. The highest concentration was observed for tricyclazole at 1.17 mg $kg^{-1}$ in brown rice. This pesticide in two brown rice samples exceeded their MRLs regulated for rice in republic of Korea. Except tricyclazole none of the observed pesticides' concentration was higher than their MRLs. The results reveal that the method is effectively applicable to routine analysis of residues of target pesticides in brown rice, barley and corn.

Sensitive determination of paroxetine in canine plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (LC-MS/MS를 이용한 비글견 혈장 중 파록세틴의 고감도 분석)

  • Chang, Kyu Young;Kang, Seung Woo;Han, Sang Beom;Youm, Jeong-Rok;Lee, Kyung Ryul;Lee, Hee Joo
    • Analytical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.138-146
    • /
    • 2007
  • A simple and sensitive method for the determination of paroxetine in canine plasma was developed and validated by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry (LC-/MS/MS). Fluoxetine was used as an internal standard. Paroxetine and internal standard in plasma samples were extracted using TBME (tert-butyl methyl ether). A centrifuged upper layer was then evaporated and reconstituted with mobile phase of 50% acetonitrile adjusted to pH 3 by formic acid. The reconstituted samples were injected into a Capcell Pak UG120 ($2.0{\times}150mm$, $5{\mu}m$) column. Using MS/MS with SRM (selective reaction monitoring) mode, the transitions (precursor to product) monitored were m/z $330{\rightarrow}192$ for paroxetine, and m/z $310{\rightarrow}148$ for internal standard. Linear detection responses were obtained for paroxetine concentration range of 0.02~5 ng/mL. A correlation coefficient of linear regression ($R^2$) was 0.9993. Detection of paroxetine in canine plasma was accurate and precise, with limit of quantification at 0.02 ng/mL. The method has been successfully applied to pharmacokinetic study of paroxetine in healthy beagle dogs.

Studies on the Utilization of Plant Pigments -II. Stability of Anthocyanin Pigments in Ganges Amaranth- (식물성(植物性) 색소(色素)의 이용(利用)에 관(關)한 연구(硏究) -II. 꽃잎맨드라미(Amaranthus tricolor L.) Anthocyanin색소(色素)의 안정성(安定性)-)

  • Kim, Kwang-Soo;Lee, Sang-Jik;Yoon, Tai-Heon
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.42-49
    • /
    • 1979
  • In order to evaluate the utility of the anthocyanins of Amaranthys tricolor L. as an edible pigment, the present study was undertaken to investigate the effects of pH. temperature, ascorbic acid, sugars and their degradation products, quercetin, thiourea, sodium pyrophosphate and metal ions on the stability of the anthocyanins in the model systems. The results obtained from this study were as follows. 1. The degradation of total anthocyanins was retarded as the pH levels decreased from 8.0 to 1.0. At pH 1.0, however. the initial degradation reaction proceeded faster than at pH 2.0 to 3.0 2. On heating in buffered aqueous solution at $80^{\circ}C$, the total anthocyanin content was higher at pH 2.0 than other pH levels. Increasing the storage temperature accelerated greatly the pigment degradation. In darkness at $40^{\circ}C$, after 10 days, only 19% of the original amount was left, while at $2^{\circ}C$, under the same conditions of storage, approximately 90% of the pigment was retained. The half-life of the pigment, 63.0 days at $2^{\circ}C$, shortened to 1. 7 days at $40^{\circ}C$. 3. An increase in ascorbic arid concentration from 0. 15 to 0.50 mg/ml lowered the anthocyanin retention. 4. There was no significant difference between glucose and fructose in anthocyanin degradation effect. Furfural was more effective than other sugar degradation products, formic acid or levulinic acid in accelerating anthocyanin breakdown. 5. Neither quercetin nor sodium pyrophosphate had a protective effect on the anthocyanins in the presence of ascorbic acid, while, in the systems 0.5 or 1 mg/ml of thiourea with $150{\;}{\mu}g/ml$ of ascorbic acid, the loss of anthocyanins was significantly reduced. 6. Both mercuric and cupric ions in 30 ppm greatly accelerated anthocyanin degradation.

  • PDF