• Title/Summary/Keyword: Formic Acid

Search Result 511, Processing Time 0.029 seconds

Performance Evaluations of Direct Formic Acid Fuel Cell (DFAFC) using PdCu Catalysts Synthesized by Control in Amount of Ethylene Glycol (에틸렌글리콜 양 조절에 의해 제조된 팔라듐구리 촉매를 이용한 개미산연료전지 성능평가)

  • YANG, JONGWON;KIM, LAEHYUN;KWON, YONGCHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.283-289
    • /
    • 2016
  • In this study, electrochemical characterizations of PdCu/C catalysts that are synthesized by modified polyol method are investigated. Most of all, amount of ethylene glycol (EG) that is used as main component for catalyst synthesis is mainly modulated to optimize synthetic condition of the PdCu/C catalyst, For evaluations about catalytic activity and performance of direct formic acid fuel cell (DFAFC), half cell and full cell tests are implemented. As a result, when amount of EG is 4M, catalytic activities of the PdCu/C catalyst such as peak current of formic acid oxidation and active surface area are best, while maximum power density of DFAFC using the optimized PdCu/C catalyst is better than that using commercial Pd/C (30 wt%) by 6%. Based on that, PdCu/C catalyst synthesized by modified polyol method plays a critical role in improving (i) catalytic activity for formic acid oxidation and (ii) DFAFC performance by employing as anodic catalyst.

Evaluation of Cell Components in Direct Formic Acid Fuel Cells (직접 개미산 연료전지의 구성요소 평가에 대한 연구)

  • Jung, Won Suk;Yoon, Sung Pil;Han, Jonghee;Nam, Suk Woo;Lim, Tae-Hoon;Oh, In-Hwan;Hong, Seong-Ahn
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.362-367
    • /
    • 2009
  • Recently, the use of formic acid as a fuel for direct liquid fuel cells has emerged as a promising alternative to methanol. In the work presented herein, we evaluated direct formic acid fuel cells(DFAFCs) with various components under operating conditions, for example, the thickness of the proton exchange membrane, concentration of formic acid, gas diffusion layer, and commercial catalyst. The thickness of the proton exchange membrane influenced performance related to the fuel cross-over. To optimize the cell performance, we investigated on the proper concentration of formic acid and catalyst for the formic acid oxidation. Consequently, membrance-electrode assembly(MEA) consisted of $Nafion^{(R)}$-115 and the Pt-Ru black as a anode catalyst showed the maximum performance. This performance was superior to the DMFCs' one.

A STUDY ON THE MICROSCOPIC CHANGE OF THE ENAMEL SURFACE AFTER ACID ETCHING (법랑질(琺瑯質)의 산탈회(酸脱灰)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Min, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.6 no.1
    • /
    • pp.37-50
    • /
    • 1980
  • Scanning Electron Microscopic (SEM) examination on the labial surface of 91 permanent upper incisors were made after etching procedure with phosphoric acid, sulfuric acid, nitric acid, hydro chloric acid, oxalic acid, formic acid, citric acid and zinc phosphate liquid for 2 minutes. Following results were obtained. 1. In the surfaces etched by 10%. 50% phosphoric acid, 50% sulfuric acid, 10%. 30% nitric acid, 10%. 50% oxalic acid, 10%. 30%. 50% formic acid, 30%. 50% citric acid and zinc phosphate liquid, there appeared to be a preferential removal of prism cores, but in the surfaces etched by 10% phosphoric acid, 50% nitric acid, 10%. 30% hydrochloric acid and 30% oxalic acid, the prism peripheries were removed preferentially. 2. According to Silverstone classification on enamel etching pattern the surface treated by zinc phosphate liquid, 30. 50% citric acid, 10%. 30%. 50% formic acid, 10%. 50% oxalic acid, 10%. 30% nitric acid, 50% sulfuric acid and 10%. 50%. phosphoric acid showed Type 1, and etched by 30% oxalic acid, 10%. 30% hydrochloric acid, 50% nitric acid and 10% phosphoric acid showed Type II. Etching of prism cores was by far the most common occurence. The changes produced could be related to intrinsic differences in histology and / or solubility of enamel.

  • PDF

Studies on the Changes of Taste Compounds during Soy Paste Fermentation(II) (된장 숙성중 정미성분의 변화에 관한 연구 (II) -유리당과 휘발성, 비휘발성 유기산)

  • 김미정;이혜수
    • Korean journal of food and cookery science
    • /
    • v.9 no.4
    • /
    • pp.257-260
    • /
    • 1993
  • For the purpose of supplying the information to improve the acceptability of soy paste as the condi-ment, we investigated the changes of free sugar, volatile and nonvolatile organic acids during improved soypaste fermentation. The results were as follows; Free sugars were increased in order of glc> xyl>ara>gal. Acetic, formic, butyric, and propionic acid in volatile organic acids were detected. And total contents were increased until 60 day. In 180 day, contents of volatile organic acids were high in order of acetic>propionic> butyric> formic. The contents of succinic and glutaric acid in nonvolatile organic acids were predominent and increased in order of succinic>glutaric>lactic. Tartaric>citric>malic acid were produced in the next order.

  • PDF

Effect of Organic Acids Derived from Black Liquor on Growth of Selected Escherichia coli MG 1655 (흑액 유래 유기산의 Escherichia coli MG 1655 성장에 미치는 영향 탐색)

  • Moon, Joon-Kwan;Um, Byung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.758-767
    • /
    • 2014
  • In this study, we selected an Escherichia coli strain (E. coli MG 1655) metabolizing arabinose derived from acid hydrolyzed black liquor as a carbon source and investigated effect of organic acids (acetic acid, formic acid, and lactic acid) presented in black liquor on growth of the E. coli MG 1655. We measured growth of E. coli MG 1655 under various concentration of each and combined three kinds of organic acids. The E. coli MG 1655 shows tolerance to acetic acid, lactic acid and formic acid at these concentrations ($1.0g/{\ell}$ acetic acid, $1.2g/{\ell}$ lactic acid and $0.8g/{\ell}$ formic acid, respectively), but displays some growth retardation over $1.5g/{\ell}$ acetic acid, lactic acid $2.0g/{\ell}$, and formic acid $1.2g/{\ell}$, respectively. In addition, formic acid was shown to be a critical factor affecting growth of the E. coli MG 1655 in the presence of three kinds of organic acids. These results indicate that the inhibitors should be removed at least $1.0g/{\ell}$ of acetic acid, $1.2g/{\ell}$ of lactic acid, $0.8g/{\ell}$ of formic acid for normal cell growth required for high yield fermentation. In addition, there is a need to construct recombinant strains that may be resistant to the same or higher organic acids concentration (> $1.2g/{\ell}$) in the growth.

Selection of Suitable Micellar Catalyst for 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Formic Acid in Aqueous Media at Room Temperature

  • Ghosh, Aniruddha;Saha, Rumpa;Ghosh, Sumanta K.;Mukherjee, Kakali;Saha, Bidyut
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.703-711
    • /
    • 2013
  • In the present investigation, kinetic studies of oxidation of formic acid with and without catalyst and promoter in aqueous acid media were studied under the pseudo-first order conditions [formic acid]T ${\gg}[Cr(VI)]_T$ at room temperature. In the 1,10-phenanthroline (phen) promoted path, the cationic Cr(VI) phen complex is the main active oxidant species undergoes a nucleophilic attack by the substrate to form a ternary complex which subsequently experiences a redox decomposition through several steps leading to the products $CO_2$ and $H_2$ along with the Cr(III) phen complex. The anionic surfactant (i.e., sodium dodecyl sulfate, SDS) and neutral surfactant (i.e., Triton X-100, TX-100) act as catalyst and the reaction undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Whereas the cationic surfactant (i.e., N-cetyl pyridinium chloride, CPC) acts as an inhibitor restricts the reaction to aqueous phase. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. The neutral surfactant TX-100 has been observed as the suitable micellar catalyst for the phen promoted chromic acid oxidation of formic acid.

The Effect of Additives on the Deposition Rate and the Surface Morphology of Trivalent Chromium Electrodeposits (3가 크롬도금의 전착속도 및 표면형상에 미치는 첨가제의 영향)

  • 예길촌;서경훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • The deposition rate, the current efficiency and surface morphology of trivalent Cr deposits were investigated according to additives in sulfate bath and current density. The deposition rate of the Cr deposits plated from the formic acid complexed bath was noticeably higher than that of the glycine complexed bath. The current efficiency of the deposition from formic acid bath was higher than that of the glycine bath and increased with current density in the range of 20-50 A/d$\m^2$. The current efficiency of the deposition from the formic acid bath with boric acid buffer was higher than that of the bath with aluminum sulfate or boric acid-aluminum sulfate buffers. The nodular crystallite size of the Cr deposits increased with current density and the uniform and crack-free growth of the deposits for the aluminum sulfate was observed compared to the other buffers.

Denigration Kinetics by Formic Acid in the Simulated Radwaste Solution (모의 방사성폐액에서의 개미산 탈질속도 연구)

  • Lee, E.H.;Whang, D.S.;Kim, K.W.;Kwon, S.G.;Yoo, J.H.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.132-139
    • /
    • 1997
  • This study was carried out to examine the kinetics and reaction mechanism of denitration with formic acid in the simulated radwaste solution containing 6 components such as Nd, Pd, Ru, Zr, Mo and Fe. All experiments were performed with the changes of initial nitric acid concentration, molar ratio of formic acid to nitric acid, and denitration time at $90^{\circ}C$ and a batch system. As results, destruction rate of nitric acid and formic acid was obtained as follows, respectively. $\frac{d[HNO_3]}{dt}=-4.842{\times}10^{-2}[HNO_3][HCOOH],\;\frac{d[HCOOH]}{dt}=-8.911{\times}10^{-2}[HNO_3][HCOOH]$ It was confirmed that denitration with formic acid was controlled by reaction mechanism suggested this study in the range of the initial nitric acid of 2~5M and $[HCOOH]/[HNO_3]$ of 1.5~2.0. In the 1M initial nitric acid, however, it was found that the nitric acid and the formic acid were decomposed by a different reaction mechanism.

  • PDF

Optimization of MOF-801 Synthesis Using Sequential Design of Experiments (순차적 실험계획법을 이용한 MOF-801 합성공정 최적화)

  • Lee, Min Hyung;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.621-626
    • /
    • 2021
  • A sequential design of experiments was used to optimize MOF-801 synthesis process. For the initial screening, a general 2k factorial design was selected followed by the central composition design, one of the response surface methods. A 23 factorial design based on the molar ratio of fumaric acid, dimethylformamide (DMF), and formic acid was performed to select the more suitable response variable for the design of experimental method among the crystallinity and BET specific surface area of MOF-801. After performing 8 synthesis experiments designed by MINITAB 19 software, the characteristic analysis was performed using XRD analysis and nitrogen adsorption method. The crystallinity with R2 = 0.999 was found to be more suitable for the experimental method than that of BET specific surface area. Based on analysis of variance (ANOVA), it was confirmed that the molar ratio of fumaric acid and formic acid was a major factor in determining the crystallinity of MOF-801. Through the response optimization and contour plot of two factors, the optimal molar ratio of ZrOCl2·8H2O : fumaric acid : DMF : formic acid was 1 : 1 : 39 : 35. In order to optimize the synthesis process, the central composition design on synthesis time and temperature was performed under the identical molar ratio of precursors. The results derived through the designed 9 synthesis experiments were calculated using the quadratic model equation. Thus, the maximum crystallinity of MOF-801 predicted under the synthesis time and temperature of 7.8 h and 123 ℃, respectively.