Denigration Kinetics by Formic Acid in the Simulated Radwaste Solution

모의 방사성폐액에서의 개미산 탈질속도 연구

  • Lee, E.H. (Korea Atomic Energy Research Institute) ;
  • Whang, D.S. (Korea Atomic Energy Research Institute) ;
  • Kim, K.W. (Korea Atomic Energy Research Institute) ;
  • Kwon, S.G. (Korea Atomic Energy Research Institute) ;
  • Yoo, J.H. (Korea Atomic Energy Research Institute)
  • Received : 1996.11.07
  • Accepted : 1997.01.08
  • Published : 1997.02.10

Abstract

This study was carried out to examine the kinetics and reaction mechanism of denitration with formic acid in the simulated radwaste solution containing 6 components such as Nd, Pd, Ru, Zr, Mo and Fe. All experiments were performed with the changes of initial nitric acid concentration, molar ratio of formic acid to nitric acid, and denitration time at $90^{\circ}C$ and a batch system. As results, destruction rate of nitric acid and formic acid was obtained as follows, respectively. $\frac{d[HNO_3]}{dt}=-4.842{\times}10^{-2}[HNO_3][HCOOH],\;\frac{d[HCOOH]}{dt}=-8.911{\times}10^{-2}[HNO_3][HCOOH]$ It was confirmed that denitration with formic acid was controlled by reaction mechanism suggested this study in the range of the initial nitric acid of 2~5M and $[HCOOH]/[HNO_3]$ of 1.5~2.0. In the 1M initial nitric acid, however, it was found that the nitric acid and the formic acid were decomposed by a different reaction mechanism.

본 연구는 Nd, Pd, Ru, Zr, Mo 및 Fe 이 함유된 6성분계의 모의 방사성폐액을 대상으로 개미산 탈질에 의한 질산과 개미산의 분해속도 및 탈질 반응기구(mechanism)의 규명에 주안점을 두었다. 모든 실험은 반응온도 $90^{\circ}C$, 회분식계로 고정하여 수행하였으며, 초기 질산농도 1, 2, 3, 5M 및 $[HCOOH]/[HNO_3]$=1.25, 1,5. 1.75, 2.0에서 각각 탈질 시간을 330분까지 변화시켰다. 질산 및 개미산의 분해속도식은 각각 다음과 같으며, $\frac{d[HNO_3]}{dt}=-4.842{\times}10^{-2}[HNO_3][HCOOH],\;\frac{d[HCOOH]}{dt}=-8.911{\times}10^{-2}[HNO_3][HCOOH]$본 연구에서 제안한 반응기구는 초기 질산농도 2~5M 및 $[HCOOH]/[HNO_3]$=1.25~2.0의 범위에서 비교적 실험치와 이론치가 잘 일치하여, 이의 적용 타당성을 확인할 수 있었으나, 초기 질산농도 1M에서는 본 모델식에서 벗어나 다른 반응기구에 의해 분해됨을 추측할 수 있었다.

Keywords

References

  1. Global 1995, Versailles v.2 Recovery of MA from irradiated SUPERFACT fuels C. Apostolidis;J. P. Glatz;R. Molinet(et al.)
  2. Global 1995, Versailles v.2 Evaluation of a process flowsheet for long-lived radionuclide partitioning A. Facchin;A. Moccia;R. Nannicim(et al.)
  3. J. Nucl. Sci. & Technol. v.29 Y. Kondo;M. Kubota
  4. J. Ncul. Sci. & Technol. v.29 J, Shriahashi;M. Kubota
  5. KAERI/RR-1632/95 Development of long-lived radionuclide partitioning technology J. H. Yoo;E. H. Lee(et al.)
  6. J. of Korean Ind. & Eng. Chem. v.6 E. H. Lee;D. S. Hwang;K. W. Kim;Y. J. Shin;J. H. Yoo
  7. J. of Korean Ind. & Eng. Chem. v.6 E. H. Lee;D. S. Hwang;K. W. Kim;Y. J. Shin;J. H. Yoo
  8. Denitration of nitric acid solutions by formic acid, DP-1229 R. F. Bradley;C. B. Goodlett
  9. The denitration of simulated fast reactor high active liquor waste, ND-R-658 C. J. Saum;L. H. Ford;N. Blatts
  10. J. Appl. Chem. v.8 T. V. Healy
  11. J. Chem. Soc. J. V. L. Longstaff;K. Singer
  12. J. Nucl. Sci. & Technol. v.15 H. Nakamura;I. Yamaguchi;M. Kubota
  13. J. Nuci. Sci. & Technol. v.16 H. Nakamura;I. Yamaguchi;M. Kubota
  14. Nucl. Tech. v.51 M. Kelm(et al.)
  15. Denitration of Savannar River Plant waste stremas, DP-1417 E. G. Orebaugh
  16. Chemical denitration of aqueous nitrate solutions, ACEL-9500 K. A. burrill