• 제목/요약/키워드: Formation Kinetics

검색결과 432건 처리시간 0.024초

Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향 (Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction.)

  • 박현;지영민
    • 한국미생물·생명공학회지
    • /
    • 제28권1호
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

Synthesis, Characterization and Antimicrobial Activity of Garcinol Capped Silver Nanoparticles

  • Fernando, H.N.;Kumarasinghe, K.G.U.R.;Gunasekara, T.D.C.P.;Wijekoon, H.P.S.K.;Ekanayaka, E.M.A.K.;Rajapaksha, S.P.;Fernando, S.S.N.;Jayaweera, P.M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권11호
    • /
    • pp.1841-1851
    • /
    • 2019
  • Garcinol, a well-known medicinal phytochemical, was extracted and isolated from the dried fruit rinds of Garcinia quaesita Pierre. In this study, garcinol has successfully used to reduce silver ions to silver in order to synthesize garcinol-capped silver nanoparticles (G-AgNPs). The formation and the structure of G-AgNPs were confirmed by UV-visible spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The antimicrobial activity of garcinol and G-AgNPs were investigated by well diffusion assays, broth micro-dilution assays and time-kill kinetics studies against five microbial species, including Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), Candida albicans (ATCC 10231) and clinically isolated methicillin-resistant Staphylococcus aureus (MRSA). The formation of G-AgNPs is a promising novel approach to enhancing the biological activeness of silver nanoparticles, and to increase the water solubility of garcinol which creates a broad range of therapeutic applications.

난류 비예혼합 및 부분예혼합 화염장에서 매연입자의 생성특성 해석 (Numerical Studies on Soot Formation Characteristics of Turbulent Non-premixed and Partially Premixed Flames)

  • 김태훈;이정원;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.141-143
    • /
    • 2012
  • The present study is aiming at numerically analyze the soot formation processes coupled with gas reaction mechanism in turbulent non-premixed and partially premixed flames. In order to realistically represent turbulence-chemistry interactions with detailed chemical kinetics and soot formation behaviour related to the turbulent non-premixed and partially premixed flames, the transient flamelet[1] and flamelet based level-set approach[2] are coupled with soot formation based on the two equation model [3] and DQMOM (Direct Quadrature Method of Moment)[4].

  • PDF

Formation and Dissociation Processes of Gas Hydrate Composed of Methane and Carbon Dioxide below Freezing

  • Hachikubo, Akihiro;Yamada, Koutarou;Miura, Taku;Hyakutake, Kinji;Abe, Kiyoshi;Shoji, Hitoshi
    • Ocean and Polar Research
    • /
    • 제26권3호
    • /
    • pp.515-521
    • /
    • 2004
  • The processes of formation and dissociation of gas hydrates were investigated by monitoring pressure and temperature variations in a pressure cell in order to understand the kinetic behavior of gas hydrate and the controlling factors fur the phase transition of gas hydrate below freezing. Gas hydrates were made kom guest gases ($CH_4,\;CO_2$, and their mixed-gas) and fine ice powder. We found that formation and dissociation speeds of gas hydrates were not controlled by temperature and pressure conditions alone. The results of this study suggested that pressure levels at the formation of mixed-gas hydrate determine the transient equilibrium pressure itself.

Gelatin 水溶液에서의 [Ni(H$_2O)_6]^{2+}$ 와 [CN]$^-$로 부터 [Ni(CN)$_4]^{2-}$生成에 관한 速度論的 硏究 (Kinetics and Mechanism for [Ni(CN)$_4]^{2-}$ Formation from [Ni(H$_2O)_6]^{2+}$ and [CN]$^-$ in Gelatin Solution)

  • 박병각;이일봉;임주상;이길준
    • 대한화학회지
    • /
    • 제31권5호
    • /
    • pp.382-388
    • /
    • 1987
  • 反應系 $[Ni(H_2O)_6]^{2+}+4CN^-{\rightleftharpoons}[Ni(CN)_4]^{2-}$를 Counductivity-meter를 이용해서 0.005% Gelatin 水溶額에서 反應速度論을 硏究하였다. $[Ni(CN)_4]^{2-}$와 [CN]$^-$의 反應으로 부터 $[Ni(CN)_4]^{2-}$ 生成速度는 $[Ni(H_2O)_6]^{2+}$에 대해서 1次, [CN]$^-$에 대해서 4次인 총괄反應이 5次로 進行됨을 알았으며, 또한 活性化 파라메타 ${\Delta}H^{\neq}$${\Delta}S^{\neq}$는 각각 5.15kcal/mole , -35.07 e.u가 되었다. 그리고 이들의 資料로 부터 이 反應系의 타당한 生成메카니즘을 제안하였다.

  • PDF

구리 촉매하에서 규소와 메탄올의 반응에 의한 Tetramethyl orthosilicate(TMOS) 합성(제2보) - 구리촉매하에서 규소와 메탄올과의 반응의 반응속도론 - (Tetramethyl orthosilicate(TMOS) Synthesis by the Copper-Catalyzed Reaction of the Metallic Silicon with Methanol (II) - The Kinetics of the Copper-Catalyzed Reaction of Silicon with Methanol -)

  • 소순영;원호연;전용진;이범재;양현수
    • 공업화학
    • /
    • 제10권2호
    • /
    • pp.259-262
    • /
    • 1999
  • 금속 규소와 구리 촉매가 함유된 접촉물과 메탄올의 반응에 의한 메톡시실란의 합성에서의 TMOS 반응 생성속도를 산출하였다. 활성 자리 수의 변화에 따른 영향을 제거하기 위해서 유속 전이 기술을 사용하여 주입되는 메탄올의 유속을 반응도중 급격히 변화시켰다. 실험 결과 TMOS 생성속도에 영향을 미치는 인자는 반응에 참여하는 메탄올 농도가 아닌 접촉물질의 사용량임을 확인하였으며, 이를 바탕으로 TMOS 생성 메카니즘에서 접촉 물질의 표면에서 중간생성물이 형성되는 반응 단계가 반응 율속단계라고 추정되었다. 최적 공정조건에서 규소 1 g당 최대 TMOS 생성속도는 $210^{\circ}C$에서 0.030 (g/min)이었으며, 이때의 활성화 에너지는 값은 8.5 kcal/mol, 반응 생성속도 상수의 온도 의존성은 식 $k=4.09{\times}10^4\;exp$ ($-4.73{\times}10^3/T$)로 나타났다.

  • PDF

The influence of sodium hypochlorite concentration on the fibrin structure of human blood clots and transforming growth factor-beta 1 release: an ex vivo study

  • Anisha Mishra ;Velmurugan Natanasabapathy;Nandini Suresh
    • Restorative Dentistry and Endodontics
    • /
    • 제47권4호
    • /
    • pp.42.1-42.11
    • /
    • 2022
  • Objective: This study investigated the effects of various concentrations of sodium hypochlorite (NaOCl) on human whole-blood clotting kinetics, the structure of the blood clots formed, and transforming growth factor (TGF)-β1 release. Materials and Methods: Human whole blood was collected from 5 healthy volunteers and divided into 4 groups: CG (control, 0.5 mL of blood), BN0.5 (0.5 mL of blood with 0.5 mL of 0.5% NaOCl), BN3 (0.5 mL of blood with 0.5 mL of 3% NaOCl), and BN5.25 (0.5 mL of blood with 0.5 mL of 5.25% NaOCl). The effects of NaOCl on clotting kinetics, structure of fibrin and cells, and release of TGF-β1 were assessed using thromboelastography (TEG), scanning electron microscopy (SEM), and enzyme-linked immunosobent assay, respectively. Statistical analysis was conducted using the Kruskal Wallis and Mann-Whitney U tests, followed by the post hoc Dunn test. A p value < 0.05 indicated statistical significance. Results: The blood samples in BN0.5 and BN3 did not clot, whereas the TEG of BN5.25 showed altered clot formation. Samples from the CG and BN3 groups could only be processed with SEM, which showed that the latter lacked fibrin formation and branching of fibers, as well as clumping of red blood cells with surface roughening and distortion. TGF-β1 release was significantly highest in BN3 when all groups were compared to CG (p < 0.05). Conclusions: Each concentration of NaOCl affected the release of TGF-β1 from blood clots and altered the clotting mechanism of blood by affecting clotting kinetics and cell structure.

예혼합 및 대향류확산 화염에서 NO의 생성에 미치는 소반응의 역할 (Roles of Key Elementary Reaction for NO Formation in Premixed Flame and Counterflow Diffusion Flame)

  • 최낙정;윤석범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.108-116
    • /
    • 1998
  • In this paper it is investigated the roles of key elementary reactions for NO formation in methane-air one-dimensional premixed flame and counterflow diffusion flame, which were studied numerically by using NO kinetics and $C_{2}$ -chemistry complied by Miller and Bowman. The spatial distributions of the reaction rates of 9 main elementary reactions directly related to NO formation and destruction were calculated. Integration of the rates of all reactions in the NO formation across the flame yields the quantitative reaction path diagram, which shows clearly relative importance of each reaction path in NO formation and how it changes with the type and parameters of the flame. The results show that the thermal and Fenimore mechanisms are dominant respectively for learn and rich premixed flames, and the latter is dominant for diffusion flames. In addition, it was found that the HCN recycle route is important for diffusion flame, and that the routes of mutual transformation between NO and NO$^{2}$, and between NO and HNO do not contribute to the net NO formation.

  • PDF

Improved Poly-${\varepsilon}$-Lysine Biosynthesis Using Streptomyces noursei NRRL 5126 by Controlling Dissolved Oxygen During Fermentation

  • Bankar, Sandip B.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권6호
    • /
    • pp.652-658
    • /
    • 2011
  • The growth kinetics of Streptomyces noursei NRRL 5126 was investigated under different aeration and agitation combinations in a 5.0 l stirred tank fermenter. Poly-${\varepsilon}$-lysine biosynthesis, cell mass formation, and glycerol utilization rates were affected markedly by both aeration and agitation. An agitation speed of 300 rpm and aeration rate at 2.0 vvm supported better yields of 1,622.81 mg/l with highest specific productivity of 15 mg/l.h. Fermentation kinetics performed under different aeration and agitation conditions showed poly- ${\varepsilon}$-lysine fermentation to be a growth-associated production. A constant DO at 40% in the growth phase and 20% in the production phase increased the poly-${\varepsilon}$-lysine yield as well as cell mass to their maximum values of 1,992.35 mg/l and 20.73 g/l, respectively. The oxygen transfer rate (OTR), oxygen utilization rate (OUR), and specific oxygen uptake rates ($qO_2$) in the fermentation broth increased in the growth phase and remained unchanged in the stationary phase.

Soot 생성을 고려한 가스발생기의 Kerosene/LOx의 비평형 화학반응 모델링 (Modeling of Non-Equilibrium Kinetics in Gas Generator including Soot Formation)

  • 유정민;이창진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.150-153
    • /
    • 2006
  • 액체 로켓 엔진의 가스발생기는 터빈 블레이드의 열적 손상을 막기 위해 온도의 제한이 있으며 이를 위해 농후 또는 희박 연소를 하게 된다. 따라서 비평형 화학 반응이 주로 발생하며 이를 해석하는 것은 매우 어렵다. 본 연구에서는 케로신과 액체산소를 추진제로 하는 가스발생기에 대하여 Dagaut이 제안한 상세 화학 반응 단계를 사용하여 완전 혼합 반응기 연소 모델의 수정을 통해 계산하였으며, Frenklach의 soot 모델을 적용하여 예측 결과의 몰 분율, 가스 물성치 등의 결과에 대한 개선 방향을 제시하였다.

  • PDF