• Title/Summary/Keyword: Formation Kinetics

Search Result 432, Processing Time 0.027 seconds

Effect of Glucose, Its Analogs and Some Amino Acids on Pre-steady State Kinetics of ATP Hydrolysis by PM-ATPase of Pathogenic Yeast (Candida albicans)

  • Bushra, Rashid;Nikhat, Manzoor;M., Amin;Luqman A., Khan
    • Animal cells and systems
    • /
    • v.8 no.4
    • /
    • pp.307-312
    • /
    • 2004
  • Fast kinetics of transient pH changes and difference spectrum formation have been investigated following mixing of ADP/ATP with partially purified plasma membrane PM-ATPase of the pathogenic yeast Candida albicans in the presence of five nutrients: glucose, glutamic acid, proline, lysine, and arginine and two analogs of glucose: 2-deoxy D-glucose and xylose. Average $H^+$- absorption to release ratio, indicative of population of ATPase undergoing complete hydrolytic cycle, was found to be 0.27 for control. This ratio varied between 0.25 (proline) to 0.36 (arginine) for all other compounds tested, except for glucose. In the presence of glucose, $H^+$- absorption to release ratio was exceptionally high (0.92). While no UV difference spectrum was observed with ADP, mixing of ATP with ATPase led to a large conformational change. Exposure to different nutrients restricted the magnitude of the conformational change; the analogs of glucose were found to be ineffective. This suppression was maximal in the case of glucose (80%); with other nutrients, the magnitude of suppression ranged from 40-50%. Rate of $H^+$- absorption, which is indicative of E~P complex dissociation, showed positive correlation with suppression of conformational change only in the case of glucose and no other nutrient/analog. Mode of interaction of glucose with plasma membrane $H^+$-ATPase thus appears to be strikingly distinct compared to that of other nutrients/analogs tested. The results obtained lead us to propose a model for explaining glucose stimulation of plasma membrane $H^+$-ATPase activity.

Growth kinetics and pattern formation of ice dendrites at small subcoolings (작은 과냉각 상태에서 ice dendrite의 결정 성장 특성)

  • 구기갑
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.197-208
    • /
    • 1995
  • An experiment study of the dendrite growth of ice crystals growing in quiescent pure subcooled water was made at small subcoolings of 0.035 K < ${\Delta}T$ < 1.000 K. It was observed that the growth kinetics and morphology are functions of not only subcooling but also thermal convection. When the subcooling is less than 0.35K, it was found that effect of thermal convection on growth kinetics of ice dendrites becomes important. Quantitiative measurements of growth velocity, $V_{G}$, and tip radii of the edge and basal planes, $R_{1}$ and $R_{2}$, were made simultaneously as a function of subcooling.

  • PDF

Spreading Kinetics of Poly(diisobutylene maleic acid) at the Air-water Interface

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.661-668
    • /
    • 2015
  • The surface rheological properties of polymer monolayer show complicated non-linear viscoelastic flow phenomena when they are subjected to spreading flow. These spreading flow properties are controlled by the characteristics of flow units. The kinetics of the formation of an interfacial film obtained after spreading poly(diisobutylene maleic acid) at air-water interface were studied by measuring of the surface pressure with time. The experimental data were analyzed theoretically according to a nonlinear surface viscoelastic model. The values of dynamic modulus, static modulus, surface viscosities and rheological parameters in various area/ monomer were obtained by appling experimental data to the equation of nonlinear surface viscoelastic model.

Crystallization Kinetics of $PbO-TiO_2-SiO_2-B_2O_3$ Glasses by DSC (DSC에 의한 $PbO-TiO_2-SiO_2-B_2O_3$계 유리의 결정화 속도)

  • 손명모;이승호;이헌수;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1331-1336
    • /
    • 1995
  • The glass-ceramics for ferro-electric were made from compositions of 70PbO.16TiO2.8SiO2.4B2O3.2AlPO4 (wt%) and 67.5PbO.20TiO2.8.5SiO2.2B2O3.2AlPO4 (wt%). The crystallization kinetics for PbTiO3 crystalline phase formation from glass was studied using non-isothermal DSC techniques. The values of activation energy, ΔE using variables of heating rate and temperature were calculated at various reaction fractions obtained from peak area over DSC. The results indicated that activation energy was lowest at 60% reaction fractions and the activation energy of glass containing 20.0 wt% TiO2 is higher than that of glass containing 16.0 wt% TiO2. The crystallization mechanism was three dimensional growth (n=4).

  • PDF

Study of Soot Formation in Fuel Rich Combustion (농후 연소 추진제의 Soot 생성 특성에 관한 연구)

  • Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.143-147
    • /
    • 2007
  • Kerosene and diesel are compounded fuels with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focuses on the prediction of the non-equilibrium reaction of fuel-rich combustion with detailed kinetics developed by Dagaut using PSR(perfectly stirred reactor) assumption. In Dagaut's surrogate model for kerosene and diesel, chemical kinetics consists of 2352 reaction steps with 298 chemical species. Also, Frenklach's soot model was implemented along with detailed kinetics to calculate the gas properties of fuel rich combustion efflux.

  • PDF

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.224-230
    • /
    • 2006
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.

Reinvestigation on the silicide formation process (실리사이드 형성 과정에 대한 재 조명)

  • Nam, Hyoung-Gin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • Silicide formation process and the formation sequence were investigated in this study. It was postulated that the formation of the second silicide phase involves glass formation between the first silicide phase and Si given that a thin metal film is deposited on a Si substrate. The concentration of glass was assumed to be located where the free energy of the liquid alloy with respect to the first nucleated compound and solid Si (${\Delta}$G') is most negative. It was also mentioned that the glass concentration is close to the composition of the second phase in order to achieve the maximum energy degradation. It was shown that the minimum ${\Delta}$G' concentration can be estimated by interpolating the portion of the liquidus where the liquid alloy is in equilibrium with the two solid constituents, namely the first compound phase and Si, thereby forming a hypothetical eutectic.

  • PDF

Experimental Study and Setup of Its Apparatus for the Formation of Hydrate in Porous Media (다공질암에서의 하이드레이트 유동실험을 위한 실험장치 제작 및 형성 실험 연구)

  • Lee Hoseob;Kang Hyun;Sung Wonmo
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.4 s.18
    • /
    • pp.8-16
    • /
    • 2002
  • Since hydrate has been discovered on the earth, many numbers of experimental studies have been conducted for characterizing the fundamental properties of hydrates, such as equilibrium conditions, thermodynamic properties, structures, kinetics, etc. It is considered naturally occurred hydrates in porous rocks have a great potential as a future of unconventional energy resources, and the investigations of formation and dissociation of hydrates in porous media are required. In this study, an experimental apparatus was designed to perform experiments of hydrates in porous core. With the apparatus developed, firstly, isochoric experiments were conducted to find hydrate equilibrium conditions in porous media, and the results were compared with reference data to verify experimental apparatus and methods in this study. Secondly, experiment of formation was examined by observing the behaviors of pressure and electrical resistance and the effects of initial water saturation on formation were analysed.

  • PDF

Numerical Analysis of Enzyme Kinetics for Undergraduate Education in Engineering (공학분야 학부교육용 효소반응속도식의 수치해석)

  • Kim, Jae-Seok;Kim, Jae-Yoon;Lee, Jae-Heung
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • An enzyme-catalized reaction is usually characterized by a very large increase in the rate and high specificity. Kinetics of simple enzyme-catalized reactions are often referred to as Michelis-Menten kinetics. A chemical that interferes with an enzyme's activity is called inhibitor. There are two types of enzyme inhibitions (viz. reversible and irreversible). If an inhibitor attaches to the enzyme with weak bonds, such as hydrogen bonds, the inhibition is usually reversible. Many enzyme reactions are also inhibited reversibly by their corresponding products. The rate of substrate disappearance together with the rate of product formation may be written by nonlinear differential equations. In the present study, numerical analyses of simple enzyme kinetics and inhibited enzyme kinetics are reported for the purpose of undergraduate education in engineering.

  • PDF

Mechanism of E. coli RNA polymerase-promoter interactions

  • Roe, Jung-Hye;Record.Jr, M.Thomas
    • The Microorganisms and Industry
    • /
    • v.13 no.1
    • /
    • pp.4-9
    • /
    • 1987
  • The regulation of gene expression in procaryotes is accomplished primarily at the level of transcription. Initiation of transcription is subject to numerous promoter-specific controls which act to ensure coordinate expression of disparate genes. The kinetics of formation of a functional("open") complex at a promoter, prior to the catalytic steps of RNA chain initiation and elongation, is thought to play a major role in controlling the efficiency of transcription of that promotor, since the subsequent processes of nucleotide binding and phosphodiester bond formation are rapid and are not promoter-specific (Mangel and Chamberlin, 1974 Shimamoto et al., 1981)

  • PDF