• 제목/요약/키워드: Formability Evaluation

검색결과 87건 처리시간 0.026초

프레스 가공성 평가를 위한 반타원체 펀치 장출 시험 (Hemi-spheroidal Punch Stretching Test for Evaluation Press Formability)

  • 이승열;금영탁
    • 소성∙가공
    • /
    • 제7권6호
    • /
    • pp.539-544
    • /
    • 1998
  • Hemi-spheroidal punch stretching test was developed to evaluate the press formability of sheet materials. In the plane strain stretching tests our specially designed hemi-spheroidal head punch were used. In the experiment the circular sheet blanks with parallel edge sides are uniformly stretched up to fracture by raising these punches to assure plane strain stretching deformation along the longitudinal direction of the specimens. The press formability was evaluated by limit punch height(LPH) and minor strain mea-surement around the fracture area. Compared with the hemi-spherical punch and the hemi-cylindrical one our hemi-spheroidal punch was more useful in the experimental reproduction and reliance for press formability test.

  • PDF

경사냉각판을 이용한 반응고 알루미늄 합금의 미세조직 및 성형성 평가 (Evaluation of Microstructure and Formability of Rheocasting Aluminum Alloy by Inclined Cooling Plate)

  • 황범규;김순국;김덕현;임수근
    • 한국주조공학회지
    • /
    • 제39권5호
    • /
    • pp.94-101
    • /
    • 2019
  • This study investigated the microstructure properties of A356 and AC8A alloys with a rheocasting mold using an inclined cooling plate. In addition, a formability evaluation was performed according to the solid fraction. Regardless of the position, the overall microstructure was shown to be uniform and a finer crystal structure was obtained as the solid fraction increased. The study confirmed that the molding pattern changed according to the solid fraction and that the spherical α-Al and eutectic α were identified. The results of the formability according to the solid fraction of A356 and AC8A alloys were similar to the simulation results.

전자 박판 부품의 가공성 평가에 대한 연구 (Estimation of Formability for Sheet Metal Forming of Electronic Parts)

  • Lee, B.C.;Kang, S.Y.;Moon, J.H.
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.104-114
    • /
    • 1996
  • For the improvement of productivity, the reduction of cost and time for manufacturing is mandatory, especially in the field of electromic industry. The study is concerned with a practical means of systematic assistance to formability estimation and selection of reliable design specification for electronic sheet metal parts. The objective of this research work is to develop a simulation system which hops to analyze the target processes with the finite element method and to acquire available design data quickly and exactly. The simulation system developed in the study consists of design verification, selection of optimal combination of parameters, knowledge acquisition and graphical user interface(GUI). Design verification is automatically carried out by using the finite element method. A data base management system and nomograms are utilized for knowledge acquisition. The developed system has been applied to some major sheet metal forming operations such as flanging, embossing, bending and blanking. According to the simulated results, the validation of the target processes has been confirmend. Analysis data, estimation rules of formability and graphical representation of the analysis have been employed for the designer's understanding and evaluation, thus providing a practical means of robust design and evaluation of forma- bility for producing electronic sheet metal parts.

  • PDF

전자 박판 부품의 가공성 평가에 대한 연구 (Estimation of Formability for Sheet Metal Forming of Electronic Parts)

  • 이병찬;강연식;양동열;문재호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.918-923
    • /
    • 1994
  • For the improvement of productivity, the reduction of cost and time for manufacturing is mandatory, especially in the field of electronic industry. The study is concemed with a practical means of systematic assistance to formability estimation and selection of reliable design specification for electronic sheet metal parts. The objective of this research work is to develop a simulation system which helps to analyze the target processes with the finite element method and to acquire available design data quickly and exactly and exactly. The simulation system developed in the study consists of design verification, selection of optimal combination of parameters, knowledge acquisition and graphical user interface(GUI). Design verification is automatically carried out by using the finite element method. A data base management system and nomograms are utilized for knowledge acquistion. The developed system has been applied to some major sheet metal forming operations such as flanging, embossing, bending and blanking. According to the simulated results, the validation of the target processes has been confirmed. Analysis data, estimation rules of formability and graphical representation of the analysis have been employed for the designer's understanfing and evaluation, thus providing a practical means of robot design and evaluation of formability for production electronic sheet metal parts.

  • PDF

벌크비정질합금의 액상 성형성 평가 (Evaluation on Liquid Formability of Bulk Amorphous Alloys)

  • 주혜숙;강복현;김기영
    • 한국주조공학회지
    • /
    • 제26권5호
    • /
    • pp.227-231
    • /
    • 2006
  • Liquid formability of bulk amorphous alloys is known to be very poor due to their high viscosity comparing with conventional metallic materials. It is important to have the fabricating technology of bulk amorphous alloys in order to make the components with complicated shape. Liquid formability includes the mold cavity filling ability and the hot tear(crack) resistance during solidification. A mold made of a commercial tool steel for the formability test was designed. Melting was performed by the arc melting furnace with melting capacity of 200 g in an argon atmosphere. Liquid formability and glass forming ability of Cu base and Ni base bulk amorphous alloys were measured and evaluated. Mold filling ability of Ni-Zr-Ti-Si-Sn alloy was better than that of Cu-Ni-Zr-Ti alloy, however the reverse is the hot tear resistance. Bulk amorphous alloy is very susceptible to crack if partial crystallization occurs during solidification. Crack resistance was thought to be closely related with the glass forming ability.

AZ3l 판재의 온간 사각컵 디프드로잉에서 금형 설계에 대한 성형성 민감도의 평가 (Evaluation of Formability Sensitivity to Die Design in Warm Square Cup Deep Drawing of AZ31 Sheet)

  • 김기덕;김흥규
    • 소성∙가공
    • /
    • 제16권2호
    • /
    • pp.120-125
    • /
    • 2007
  • Magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. Tn the present study, square cup deep drawing tests using the magnesium alloy AE31 sheet were experimentally conducted using the porches and dies with different edge radius to evaluate the formability sensitivity to the die design variables. The experimental results showed that the fracture position over the cup wall moved from the punch nose to the flange as the die temperature increased, and that the drawing depth change was more affected by the punch radius than the die radius.

다구찌방법을 이용한 디프드로잉 공정의 가공성평가에 대한 연구 (A study on the formability estimation of deep drawing process by using taguchi method)

  • Lee, B.C.;Moon, J.H.;Yang, D.Y.
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.17-24
    • /
    • 1997
  • Despite the increasing demands for improved product design, a limited number of works have been reported in the field of sheet metal forming. In the present study, introducing the Taguchi method, an otpimal and robust combination of parameters in found and a data base management system is utilized for knowledge acquisition. Analysis data, estimation rules of formability and graphical representation of the analysis have been employed for the dewigner's understanding and evaluation. The developed system is applied to a deep drawing process. Through the present study, it is shown that the developed systerm is useful for the design and the formability estimation of sheet metal forming processes.

  • PDF