• Title/Summary/Keyword: Forging ratio

Search Result 95, Processing Time 0.024 seconds

Effect of Changes in Metal Characteristics of Hot-Forged Alloy Steel on Mechanical Properties of an Automotive Automatic Transmission Gear (자동차 자동변속기 기어용 합금강의 열간 단조 성형에 따른 기계적 특성 변화에 관한 연구)

  • Kim, Hwa-Jeong;Kim, Yohng-Jo;Kim, Hyun-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.135-146
    • /
    • 2016
  • This study investigated the effect of the changes in metal characteristics due to the hot forging on SCR420HB applied to ensure the optimal production of the hot-forging ratio on the mechanical properties of an automotive automatic transmission gear. The microstructural changes in the forging ratio were investigated by adjusting the forging range into multiple ranges from alloy steel. This was done in order to set the optimum forging range given the manufacturing process conditions during the hot forging of alloy steel parts with a carbon content of more than 0.8% wt. The effects of the content change in the microstructure on the mechanical properties due to the use of the part were examined.

FEM Analysis of Void Closure Behavior during Open Die Forging of Rectangular Billets (사각 빌렛 자유단조시 내부기공폐쇄거동 유한요소해석)

  • 천명식;류종수;문영훈
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.148-153
    • /
    • 2004
  • Finite element analysis of open die forging process to make rectangular billet has been performed in this study. Three dimensional rigid-plastic finite element method was used to analyze the effects of process variables, forging pass design and die configurations on the void closure phenomena to maximize the internal deformation for better structural homogeneity and center-line consolidation of the rectangular billet. The effect of anvil width ratio, anvil pitch, anvil shape and number of pass has been estimated by the degree of void closure ratio. Although it is difficult to optimize process parameters in the operational environments, favourable process conditions are suggested for better product quality.

FEM Analysis for the Prediction of Void Closure On the Open Die Forging Process (자유단조공정에서 기공폐쇄 예측을 위한 유한요소해석)

  • Min, K.Y.;Lim, S.J.;Choi, H.J.;Choi, S.;Park, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.71-74
    • /
    • 2008
  • In order to resolve the problems which appear after the clean large ingot production process, the impurities which are involved in the steel smelting process should be removed by developing cleaner materials. Through the rationalization of cogging process that is the first forging process of large ingot the quality is to be improved. For the sake of the optimization of an open die forging process and the improvement of the subject matter frequency ratio, a hazard precise die forging process must be developed and a Near Net Shape Forming accomplished. As a result, energy can be reduced by minimizing an after control process. In order to produce large axes and other forming parts, processing techniques are to be developed. In this context, this paper is a study about a reduction ratio, dies width ratio and rotary angles, the amount of overlap, and intends to analysis cogging processes, utilizing Deform-3D cogging module

  • PDF

A Door Frame for Wind Turbine Towers Using Open-Die Forging and Ring-Rolling Method (열간자유단조와 링롤링공법을 이용한 풍력발전기용 도아프레임 개발)

  • Kwon, Yong Chul;Kang, Jong Hun;Kim, Sang Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.721-727
    • /
    • 2015
  • The mechanical components for wind turbines are mainly manufactured using open-die forging. This research introduces an advanced forging method to produce the door frame of the tubular wind turbine tower. The advantages of this new forging method are an increase in the raw material utilization ratio and a reduction in energy cost. In the conventional method, the door frame is hot forged with a hydraulic press and amounts of material are machined out because of the shape difference between the forged and final machine products. The proposed forging method is composed of hot forging and ring rolling processes to increase the material utilization ratio. The effectiveness of this new forging method is deeply related to the ring rolled blank dimension before the final forging. To get the optimal ring rolled blank, forged shape prediction using the finite element analysis method was applied. The forged dimensions produced by the new forging method were verified through the first article production.

An Image Quality Evaluation Model for Optical Strip Signal-to-Noise Ratio in the Target Area of High Temperature Forgings

  • Ma, Hongtao;Zhao, Yuyang;Feng, Yiran;Lee, Eung-Joo;Tao, Xueheng
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Under the time-varying temperature, the high-temperature radiation of forgings and the change of reflection characteristics of oxide skin on the surface of forgings lead to the difficulty of obtaining images to truly reflect the geometric characteristics of forgings. It is urgent to study the clear and reliable acquisition method of hot forging feature image under time-varying temperature to meet the requirements of visual measurement of hot geometric parameters of forgings. Based on this, this chapter first puts forward the quality evaluation method of forging feature image, which provides guarantee for the accurate evaluation of feature image quality. Furthermore, the factors that affect the image quality, such as the radiation characteristics of forgings and the photographic characteristics of cameras, are analyzed, and the imaging spectrum which can effectively suppress the radiation intensity of forgings is determined. Finally, aiming at the problem that the quality of image acquisition is difficult to guarantee due to the drastic change of radiation intensity of forgings under time-varying temperature, an image acquisition method based on minimum signal-to-noise ratio (SNR) based laser light intensity adaptation is proposed, which significantly improves the definition of feature light strips in forging images at high temperature, and finally realizes the clear acquisition of feature images of large-scale hot forging under time-varying temperature.

Void Closing Conditions of Large Ingot by Path Schedules (대형 잉곳의 기공압착 효과 향상을 위한 폐쇄조건 연구)

  • Choi, I.J.;Choi, H.J.;Kim, D.W.;Choi, S.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.480-485
    • /
    • 2010
  • In this work, the closing behavior of cylindrical-shaped voids was experimentally investigated according to various parameters such as reduction ratio in height, initial void size and billet rotation during hot open die forging process. The reduction ratio in height, number of path, and billet rotation were chosen as key process parameters which influence the void closing behavior including the change of void shape and size. On the other hand, values of die overlapping and die width ratio were set to be constant. Void closing behavior was estimated by microscopic observation. Based on the observations, it was confirmed that application of billet rotation is more efficient to eliminate the void with less reduction ratio in height. The experimental results obtained from this study could be helpful to establish the optimum path schedule of open die forging process.

The Effects of the Process and Die Design for Precision Forging of Al Alloys (AI 합금 정밀단조를 위한 금형설계 및 공정조건의 영향)

  • Lee, Young-Seon;Lee, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.166-173
    • /
    • 1999
  • Al forged parts are many cases with rib-web section which is difficult to manufacture precisely. Therefore, process conditions must be optimized for precision forging of Al alloys. In this study, various process parameters such as die design, lubricant, ram speed, forging temperature have been investigated using the experiment, upper bound theory and F.E.M. simulation to develop the precision forging technology for rib-web shape component. When lubricant is applied to both material and die, shear friction factor is 0.1 which shows best effect of lubricant. It is specific corner radius of die that minimized forging load regarding process conditions, especially according to the ratio of the width of rib and web. In conclusion, optimum corner radius is 2~3mm when the width of rib and web is 3mm and 20mm respectively.

  • PDF

ANALYSIS OF FORGING LIMIT FOR SINTERED POROUS METALS (다공성 소결금속의 단조한계해석)

  • 한흥남;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.64-73
    • /
    • 1995
  • The forging limit curves of sintered porous metals have been calculated, in terms of the two principal strains, by the Lee-Kuhn initial imperfection model. The various yield functions for porous metal have been applied to the initial imperfection model. When the value of initial imperfection ratio equals the value of initial relative density of the sintered porous metals, the calculation values are in good agreement with the measured data. The slopes of the forging limit curves are about 0.5 as in the case of non-porous metals.

Analysis of Filling and Stresses in the Hot Forging Process Depending on Flange Die Shapes (열간단조 플랜지 금형의 형상에 따른 충전 및 응력해석)

  • Kim, Jun-Hyoung;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.423-430
    • /
    • 2010
  • Hot closed-forging process and the die used for forming an automotive flange were analyzed from the viewpoints of heat transfer, grain-flow lines, and stresses to obtain a forged product without defects such as surface cracks, laps, cold shots, and partial filling. The forging process including up-set, pre-forging, final forging and pressing forces was investigated using finite element analysis. The influence of the preform die and the ratio of the heights of the upper die to lower die on the forging process and die were investigated and a die shape ($10^{\circ}$ for the preform die, and 1.5:1 ratio for the final die) suitable to achieve successful forging was determined on the basis of a parametric study. All parametric design requirements such as strength, full filling, and a load limit of 13,000 KN were satisfied for this newly developed flange die. New dies and flanges were fabricated and investigated. Defects such as partial filling and surface cracks were not observed.