• Title/Summary/Keyword: Forging Design

Search Result 445, Processing Time 0.025 seconds

A Study on the Determination of Initial Biller for Axisymmetric Cold Forging Products Using Neural Networks (신경망을 이용한 축대칭 냉간 단조품의 초기 소재 결정에 관한 연구)

  • 김영호;배원병;박종옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.217-222
    • /
    • 1994
  • This paper describes the determination of optimal initial billet size for axisymmetric cold forging products using neural networks. The determination of optimal initial billet size is very important in forging design and forming sequence design, because the result of such designs and forming load can be different by variable initial billet sizes. The forming difficulty has been defined as the degree of difficulty in forming by 3 process ' forward extrusion, backward extrusion and upsetting. By neural networks a forming difficulty can be determined with the ratio of shape and forming process. From the graph of maximum, minimum, and average forming difficulties by variable billet sizes, the optimal billet size can be determined. The initial billets of a solid part and a hollow part whichwas determined by this study are compared with the sequence drawing generated by the one of forming sequence design system.

  • PDF

Process Design of Cold Forging for Drum Clutch with Inner Tooth Component (내 치형 드럼클러치의 냉간 단조 공정 설계)

  • Park Sang Soo;Kim Byung Min;Lee Jung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.30-37
    • /
    • 2005
  • A drum clutch which is a main part for the automatic transmission of auto-mobiles has been manufactured by glob threading and machining. The tooth shape of the drum clutch manufactured by machining has lower dimensional accuracy than that by pressing and its machining needs the enormous cost at plant investment. Thus, this study was designed to develop cold forging process and to improve the productivity and dimensional accuracy. In this work, variables affecting dimensional accuracy were first determined, then cold forming process design according to each variables was performed by FE simulation. Optimal process was suggested on the basis of analytical results.

A Structural Analysis System for Forging Die Sets Design, AFDEX/DIE (단조용 금형세트 설계용 구조해석 시스템 AFDEX/DIE)

  • 전만수;이민철;류찬호;조홍석
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.165-170
    • /
    • 2000
  • In this paper, a general approach to structural analysis of forging die sets is presented and the related design system, AFDEX/DIE, is introduced. Structural analysis of die sets is conducted by the finite element method considering both contact problem and shrink fit. In the approach, amount of shrink fit is controlled by thermal load, i.e., temperature difference between die insert and shrink rings. The loading conditions are extracted automatically from the simulation results obtained by a rigie-thermoviscoplatic finite element method. Typical application examples are given, which show the applicability of the approach and the related program.

  • PDF

Isothermal Forging Design in Turbine Disk by Finite Element Method (터빈디스크의 등온단조 공정설계를 위한 유한요소 해석)

  • 김태호;박노광;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.93-98
    • /
    • 1996
  • Process design is one of the most important fields in metal forming, where the finite element method has appeared a useful method for industrial applications. In this study. A finite element method has been applied for iso-thermal forging design in turbine disk. This kind of approach is good for minimize actual redesign of die. which can reduce die production cost. - vital importance in current industrial environment.

  • PDF

Process Design of Titanium Alloy Backward Extrusion (티타늄 합금의 후방압출 공정 설계)

  • 홍성석;김진영;김홍규;박태원;백두현;심인옥;김성식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.68-80
    • /
    • 2003
  • The backward extrusion process of titanium alloy with large length to diameter ratio was simulated for different punch and die shape. The process variables such as initial billet shape, interface friction, contacting time and punch velocity were investigated and compared with experimental results. To make more effectively titanium alloy cup shape forging products with vertical wall, a modified die design which can reduce forging load, prevent sticking with punch and minimize material loss was suggested.

A study of the Forging Process Using (알루미늄 주물을 이용한 단조 공정 연구)

  • 김대용;윤성만;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.138-141
    • /
    • 1997
  • CFM(Cast Forge Method) is widely used in manufacturing industry to produce aluminium parts with good mechanical properties and low production cost. CFM is the process which produces a final products by forging from the initial billet by casting. The study on this paper covers the automatic design method which finds a pertinent shape for initial billet using Fast Fourier Transform, low-pass frequency filtering and FEM simulation of the nonisothermal forging process by DEFORM. These works will give us an information to enhance the low strength of a aluminium casting.

  • PDF

A Study on the Blocker Design of Closed Die Forging with Discrete Wavelet Transform (이산 웨이블릿 변환을 이용한 형단조 공정의 예비성형용 금형 설계에 관한 연구)

  • 한상훈;임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.27-33
    • /
    • 2003
  • In closed-die forging process, blocker has been used to fill and distribute metal well in finisher die. Generally, the blocker shape was determined by an expert with many experiences. However, the manual blocker design process takes much time and efforts, so various automatic methods for the blocker design process have been suggested for the last three decades. The method with filtering in FFT (Fast Fourier Transform) for the blocker design provides general solution than other methods. But, due to the properties of FFT in time-frequency domain, this method has some drawbacks such as long calculation time, difficulty of local control and additional boundary process after filtering. In this study, DWT (Discrete Wavelet Transform), which is more flexible and is more wildly used than FFT, is applied to the blocker design. The method with filtering in DWT is very proper to design blocker in both 2-D and 3-D shapes. To verify the efficiency of this method, blockers of some models are designed and the results show that blocker design with DWT is effective fer the blocker designs

  • PDF

Blocker Design of Closed Die Forging with Wavelet Transform (이산 웨이블릿 변환을 이용한 형단조 공정의 예비성형용 금형 설계)

  • 한상훈;임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2003
  • In a closed-die forging process, blocker has been used to fill and distribute metal well in finisher die. Generally, the blocker shape was determined by an expert with many experiences. However, the manual blocker design process takes much time and efforts, so various automatic methods for the blocker design process have been suggested for the last three decades. The method with filtering in FFT (Fast Fourier Transform) for the blocker design provides general solution than other methods. But. due to the properties of FFT in time-frequency domain, this method has some drawbacks such as long calculation time, difficulty of local control and additional boundary process after filtering. In this study. DWT (Discrete Wavelet Transform), which is more flexible and is more wildly used than FFT, is applied to the blocker design. The method with filtering in DWT is very proper to design blocker in both 2-D and 3-D shapes. To verify the efficiency of this method, blockers of some models are designed and the results show that blocker design with DWT is effective for the blocker designs.

A Development of Automation Program for Forging Die Design of Non-Axisymmetric Parts (비축대칭 부품의 단조금형 설계용 자동화 프로그램 개발)

  • Kwon, Soon-Hong;Choi, Jong-Ung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2002
  • This study described computer aided die design system for cold forging of non-axisymmetric parts such as gears and splines. To design the cold forging die, an integrated approach based on a rule-base system and commercial F. E. code were adopted. This system is implemented on the personal computer and its environment is a commercial CAD package named as Auto CAD. The system includes four modules. In the initial data input module, variables which are necessary to design of die are inputted by user and die material are selected from the database according to the variables. In the analysis and redesign module, stress distribution acting on the designed die is analyzed by commercial FEM code NISA II with elastic mode. If die failure predicted, the designed die would modified in four ways to prevent die failure in both states of stress free and pressurizing. The developed system provides useful date and powerful capabilities for die design of non-axisymmetric parts.

  • PDF