• 제목/요약/키워드: Forging Design

검색결과 445건 처리시간 0.021초

소형 가스터빈용 터빈 디스크의 형단조 공정 연구 (Study on the Closed-die Forging Process for Turbine Disk of Small Gas Turbine Engine)

  • 김동권;김영득;김동영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.427-430
    • /
    • 2007
  • Gas turbine disk components have been used by Ni-base superalloys which have high temperature strength for enduring stress induced by high speed rotation. This study introduced the overview of development strategy of precision forging of turbine disk and closed-die forging process for manufacturing good quality gas turbine disk. To make superior quality turbine disk, it is important to select optimal forging process conditions like preform shape, die shape and forging temperature etc. In this paper, closed-die forging process has been studied through the rigid-plastic finite element simulation. Proposed forging process can be used for the successful manufacturing of small-size gas turbine disk.

  • PDF

선박엔진용 초대형 열간단조품, 피스톤크라운의 단조공정 및 금형 설계 (Process Planning and Die Design for the Super Hot Forging Product, the Piston Crown Used in Marine Engine)

  • 황범철;이우형;배원병;김철
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.600-606
    • /
    • 2008
  • In closed-die hot forging, a billet is formed in dies such that the flow of metal from the die cavity is restricted. Some parts can be forged in a single set of dies, whilst others, due to shape complexity and material flow limitations, must be shaped in multi sets of dies. The purpose of a performing operation is to distribute the volume of the parts such that material flow in the finisher dies will be sound. This study focused on the design of preforms, flash thickness and land width by theoretical calculation and finite element analysis, to manufacture the super hot forging product, 70MC type piston crown used in marine engine. The optimal design of preforms by the finite element analysis and the design experiment achieves adequate metal distribution without any defects and guarantees the minimum forming load and fully filling of the cavity of the die for producing the large piston crown. The maximum loads obtained by finite element analysis are compared with the results of experiments. The loads of the analysis have good agreements with those of the experiment. Results obtained using DEFORM-2D enable the designer and manufacturer of super hot forging dies to be more efficient in this field.

압축기용 구동스크롤의 밀폐형 배압 금형 개발 (Development of a Closed-die Design with Backpressure to Forge Rotating Scrolls)

  • 김용배;정기호;이상목;김응주;이종섭;최두순;이근안
    • 소성∙가공
    • /
    • 제22권4호
    • /
    • pp.183-188
    • /
    • 2013
  • Scroll compressors are widely used in air conditioning systems and in automobiles due to their low pressure loss, minimal vibrations, and light-weight. Open-die forging with back pressure is used to forge the rotating scroll, and it requires special care since the forging die can be severely damaged at the fixed end of the spiral cavity similar to a fracture of a cantilever beam. To overcome the inevitable weakness of the forging die due to such damage, an innovative design is necessary. In this study, structural analysis using the finite element method was conducted to determine the reason for the fracture of the forging die. A novel design to avoid stress concentrations and vertical deflection, causing serious damage to the die, is suggested.

열간 형단조에 의한 아이들러 개발에 대한 연구 (A Study on the Development of Idler by Hot Closed-die Forging)

  • 정호승;조종래;박희천
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.199-203
    • /
    • 2003
  • Idler of excavator are large product with diameter 500 - 600 mm and parts of a power transmit device. The object of the paper is developed large products by hot closed-die forging. The forging process which is proposed from numerical analysis and various tests is developed a large products with good quality. To estimate the design process parameters such as working load, temperature and flash thickness so on, numerical analysis are used by DEFORM 2D. To obtain a flow stress data and optimal forging temperature is carried out hot compression and tensile test at a various temperature range. Developed product is tested mechanical properties of elongation, hardness and tensile strength so on. Test results are presented excellent mechanical properties.

  • PDF

A STUDY OF THE MULTI-ACTION FORGING DIE SET CONTROLLED BY THE SCREWS MECHANISM

  • Yang Jin-Bin;Fang Jue-Jung
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.198-201
    • /
    • 2003
  • The multi-action forging process is one of developing directions of forging technologies. In this study, the multi-action die is designed and developed by the screws mechanism and the forging simulation is conducted by using plasticine to investigate the optimum conditions for the design of the screws. The results show the design variables are optimum when the diameter is 30 mm and the screw angle is $60^{\circ}$ for the upper screw rod and the outer diameter is 60 mm and the screw angle is $23.4^{\circ}$ for the lower screw tube. It makes the relative velocity between the upper punch and the die to be two to one, which is the expected condition. The material flow of the plasticine forgings is uniform. Therefore, it is feasible to use the screw set as the multi-action mechanism for controlling the movement of the multi-action forging die set.

  • PDF

선박 중형엔진 일체형 Crankshaft 제작용 형단조장치 기술개발에 관한 연구 (A Study of Forging Equipment for One Body Crankshaft of Medium Sized Marine Engine)

  • 윤성만
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.107-110
    • /
    • 1999
  • The purpose of this research is for the development of a new type forging equipment H.C.G(Hyundai Continuous Grain-flow) by using two virtual build-up tools rigid viscoplastic FEM and downsized plasticine experiment. This forging equipment consists of consecutive horizontal and vertical pressure while the traditional forging method consists of only vertical pressure. Using this method high quality crankshafts can be forged as it can maintain a continuous grain flow. The factors considered in the development of equipment are die geometry for flawless deformed shape die reaction forces stress/strain distributions and continuous material flow. We carried out several numerical simulations and downsized plasticine experiments for the proper design of the forging equipment. The validity of those simulation results is confirmed by checking with the actual test results. Based on these simulation results the proper design of the H.C.G for ging equipment is enabled.

  • PDF

냉간 단조 금형의 마멸 감소를 위한 예비성형체 설계방법 (Methodology of Perform Design for Reducing Tool Wear in Cold Forging)

  • 이진호;고대철;김태형;김병민;최재찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.164-167
    • /
    • 1997
  • The die wear is one of the main factors affecting die accuracy and tool lifetime. It is desired to reduce die wear by developing simulation method to predict wear based on process parameters, and then optimize the process. Therefore, this paper describes disign methodology of preform for minimizing wear of finisher die in multi-stage cold forging processes. The finite element method is combined with the routine of wear prediction and the cold forging processes. The finite element method is combined with the routine of wear prediction and the cold forging process is analyzed. In order to obtain preform to minimize die wear, the FPS algorithm is applied and the optimal preform shape is found from iterative deformation analysis and wear calculation.

  • PDF

선박 중형엔진용 일체형 Crankshaft 단조장치에 관한 연구 (A Study of Forging Equipment for One Body Crankshaft of Medium Sized Marine Engine)

  • 박승희;윤성만;신상엽;박래원;박종국;이응기;김대두
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.237-244
    • /
    • 1999
  • The purpose of this research is for the development of a new type forging equipment. H.C.G.(Hyundai Continuous Grain-Flow), by using two virtual build-up tools, rigid viscoplastic FEM and downsized plasticine experiment. This forging method consists of only vertical pressuree. Therefore, high quality crankshafts can be forged with this method as it can maintain a continuous grain flow. The factors considered in the development of equipment are die geometry for flawless deformed shape, die reaction forces, stress/strain distributions and continuous material flow. We carried out several numerical simulations and downsized plasticine experiments for the proper design of the forging equipment. The validity of those simulation results is confirmed by checking with the actual test results. Based on these simulation results, the proper design of the H.C.G. forging equipment is enabled.

  • PDF

플라스티신을 이용한 BJ형 등속죠인트 외륜의 냉간단조공정설계 (Design of the Cold Forging Process for the Outer Race of BJ Type Constant Velocity Joint using Plasticine)

  • 이정환;이영선;박종진
    • 소성∙가공
    • /
    • 제3권3호
    • /
    • pp.282-290
    • /
    • 1994
  • The outer race of BJ type C.V.Joint has a complicated shape and ball grooves. It is produced by cold or warm precision forging. Especially, the precision level of the ball grooves determines the quality of the part. The objective of the present study is to develop process conditions of the cold forging using the plasticine. Because the cold forging consists of forward extrusion, upsetting, backward extrusion and cold sizing, the study was focused on finding the best perform for each process. The data obtained from the study will be used in the design of the cold forging process for the outer race.

  • PDF

전기장 이론을 이용한 3차원 단조공정에서의 예비형상 설계 (The Optimal Design of Preform in 3-D Forging by using Electric Field Theory)

  • 신현기;이석렬;박철현;양동열
    • 소성∙가공
    • /
    • 제11권2호
    • /
    • pp.165-170
    • /
    • 2002
  • The preform design of forging processes plays a key role in improving product qualities, such as defect prevention, dimensional accuracy and mechanical strengths. In the industry, preforms are generally designed by the iterative trial-and-error approach, but it results in significant tooling cost and time. It is thus necessary to minimize lead-time and human intervention through an effective preform design method. In this paper, the equi-potential lines designed in the electric field are introduced to find the preform shape, and then the optimization process is used to choose the equi-potential lines that will keep the die wear to a minimum Because, in the forging process, the die wear is a function of various important factors, such as forming stress and strain, microstructure and mechanical properties of a Product.