Abstract
The preform design of forging processes plays a key role in improving product qualities, such as defect prevention, dimensional accuracy and mechanical strengths. In the industry, preforms are generally designed by the iterative trial-and-error approach, but it results in significant tooling cost and time. It is thus necessary to minimize lead-time and human intervention through an effective preform design method. In this paper, the equi-potential lines designed in the electric field are introduced to find the preform shape, and then the optimization process is used to choose the equi-potential lines that will keep the die wear to a minimum Because, in the forging process, the die wear is a function of various important factors, such as forming stress and strain, microstructure and mechanical properties of a Product.