• 제목/요약/키워드: Forged image

검색결과 35건 처리시간 0.021초

Detection Copy-Move Forgery in Image Via Quaternion Polar Harmonic Transforms

  • Thajeel, Salam A.;Mahmood, Ali Shakir;Humood, Waleed Rasheed;Sulong, Ghazali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.4005-4025
    • /
    • 2019
  • Copy-move forgery (CMF) in digital images is a detrimental tampering of artefacts that requires precise detection and analysis. CMF is performed by copying and pasting a part of an image into other portions of it. Despite several efforts to detect CMF, accurate identification of noise, blur and rotated region-mediated forged image areas is still difficult. A novel algorithm is developed on the basis of quaternion polar complex exponential transform (QPCET) to detect CMF and is conducted involving a few steps. Firstly, the suspicious image is divided into overlapping blocks. Secondly, invariant features for each block are extracted using QPCET. Thirdly, the duplicated image blocks are determined using k-dimensional tree (kd-tree) block matching. Lastly, a new technique is introduced to reduce the flat region-mediated false matches. Experiments are performed on numerous images selected from the CoMoFoD database. MATLAB 2017b is used to employ the proposed method. Metrics such as correct and false detection ratios are utilised to evaluate the performance of the proposed CMF detection method. Experimental results demonstrate the precise and efficient CMF detection capacity of the proposed approach even under image distortion including rotation, scaling, additive noise, blurring, brightness, colour reduction and JPEG compression. Furthermore, our method can solve the false match problem and outperform existing ones in terms of precision and false positive rate. The proposed approach may serve as a basis for accurate digital image forensic investigations.

동시 발생 행렬의 특성함수 모멘트를 이용한 접합 영상 검출 (Spliced Image Detection Using Characteristic Function Moments of Co-occurrence Matrix)

  • 박태희;문용호;엄일규
    • 대한임베디드공학회논문지
    • /
    • 제10권5호
    • /
    • pp.265-272
    • /
    • 2015
  • This paper presents an improved feature extraction method to achieve a good performance in the detection of splicing forged images. Strong edges caused by the image splicing destroy the statistical dependencies between parent and child subbands in the wavelet domain. We analyze the co-occurrence probability matrix of parent and child subbands in the wavelet domain, and calculate the statistical moments from two-dimensional characteristic function of the co-occurrence matrix. The extracted features are used as the input of SVM classifier. Experimental results show that the proposed method obtains a good performance with a small number of features compared to the existing methods.

How to identify fake images? : Multiscale methods vs. Sherlock Holmes

  • Park, Minsu;Park, Minjeong;Kim, Donghoh;Lee, Hajeong;Oh, Hee-Seok
    • Communications for Statistical Applications and Methods
    • /
    • 제28권6호
    • /
    • pp.583-594
    • /
    • 2021
  • In this paper, we propose wavelet-based procedures to identify the difference between images, including portraits and handwriting. The proposed methods are based on a novel combination of multiscale methods with a regularization technique. The multiscale method extracts the local characteristics of an image, and the distinct features are obtained through the regularized regression of the local characteristics. The regularized regression approach copes with the high-dimensional problem to build the relation between the local characteristics. Lytle and Yang (2006) introduced the detection method of forged handwriting via wavelets and summary statistics. We expand the scope of their method to the general image and significantly improve the results. We demonstrate the promising empirical evidence of the proposed method through various experiments.

ART2 기반 RBF 네트워크를 이용한 여권 인식 (Passports Recognition Using ART2-Based RBF Network)

  • 김광백;오암석
    • 한국멀티미디어학회논문지
    • /
    • 제8권5호
    • /
    • pp.700-706
    • /
    • 2005
  • 출입국 관리 시스템은 여권 소지자, 수배자, 출입국 금지자 또는 불법 체류자 등의 출입국 부적격자를 검색하여 출입국자를 관리하고 있다. 이러한 출입국 관리 시스템은 위조 여권 판별이 중요하므로 위조 여권을 판별하는 전 단계로 ART2 기반 RBF네트워크를 제안하여 여권을 인식하는 방법을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 스미어링 그리고 윤곽선 추적 알고리즘을 이용하여 코드의 문자열 영역과 개별 코드의 문자를 추출한다. 추출된 개별 코드 인식은 ART2 알고리즘을 기반으로 한 RBF네트워크를 제안하여 여권 인식에 적용한다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상들을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.

  • PDF

워터마킹 영상의 비가시성 개선에 관한 연구 (A Study on Invisibility Improvement of Watermarking Image)

  • 김형균;이양원
    • 한국항행학회논문지
    • /
    • 제11권3호
    • /
    • pp.329-336
    • /
    • 2007
  • 최근 몇 년 동안 인터넷을 기반으로 한 디지털 영상 기술과 디지털 콘텐츠의 사용이 빠르게 증가하고 있어서 디지털 영상 보호에 대한 요구가 더욱 중요시되고 있다. 디지털 이미지의 저작권 보호를 위해, 콘텐츠 인증, 소유권 인증, 불법 복제등과 같은 인증 기술의 검증이 필요하다. 영상에 디지털 워터마크를 삽입하는 비가시적 부호화 기술인 디지털 워터마킹은 정교한 인지 정보를 워터마킹 과정에 영상의 투명도와 강건함을 제공하기 위해 사용되어야 한다. 본 논문에서는 시각 특성을 이용한 주파수 영역에서 DWT 변환을 이용해 위조 공격, 소유권 보호 및 인증 방지를 위한 디지털 워터마킹 알고리즘을 구현하고자 한다.

  • PDF

비트 플레인을 이용한 영상의 연성 워터마킹 (Fragile Image Watermarking Using Bit Planes)

  • 이혜주
    • 방송공학회논문지
    • /
    • 제6권1호
    • /
    • pp.41-49
    • /
    • 2001
  • 디지털 워터마킹은 워터마크의 성질에 따라 강성 워터마킹(robust watermarking)과 연성 워터마킹(fragile watermarking)으로 분류할 수 있다. 강성 워터마킹은 저작권 보호를 위한 기법이고, 연성 워터마킹은 데이터의 인증/무결성을 위한 기법으로 데이터의 진위를 확인하는 수단으로 이용할 수 있다. 일반적으로 연성 워터마킹은 영상을 변조하거나 위조하였을 때 이전에 삽입되어 있던 워터마크를 검출할 수 없게 되면 영상이 변조나 위조되었다고 판단한다. 영상의 화소 값은 비트의 조합으로 구성되므로 영상의 변조는 비트의 변경을 의미한다고 할 수 있다 따라서, 본 논문에서는 상위 비트 플레인(bit plane)과 하위 비트 플레인의 변조를 판단하기 위해 2개의 워터마크를 삽입하는 연성 워터마킹을 제안한다. 실험결과, 영상에 삽입된 워터마크는 시각적으로 영상 내에서 확인할 수 없으며. 영상에 변조를 가하였을 때 변조의 위치를 확인할 수 있었다.

  • PDF

Recognition of the Passport by Using Fuzzy Binarization and Enhanced Fuzzy Neural Networks

  • Kim, Kwang-Baek
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.603-607
    • /
    • 2003
  • The judgment of forged passports plays an important role in the immigration control system, for which the automatic and accurate processing is required because of the rapid increase of travelers. So, as the preprocessing phase for the judgment of forged passports, this paper proposed the novel method for the recognition of passport based on the fuzzy binarization and the fuzzy RBF neural network newly proposed. first, for the extraction of individual codes being recognized, the paper extracts code sequence blocks including individual codes by applying the Sobel masking, the horizontal smearing and the contour tracking algorithm in turn to the passport image, binarizes the extracted blocks by using the fuzzy binarization based on the membership function of trapezoid type, and, as the last step, recovers and extracts individual codes from the binarized areas by applying the CDM masking and the vertical smearing. Next, the paper proposed the enhanced fuzzy RBF neural network that adapts the enhanced fuzzy ART network to the middle layer and applied to the recognition of individual codes. The results of the experiment for performance evaluation on the real passport images showed that the proposed method in the paper has the improved performance in the recognition of passport.

  • PDF

Passport Recognition using Fuzzy Binarization and Enhanced Fuzzy RBF Network

  • Kim, Kwang-Baek
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.222-227
    • /
    • 2004
  • Today, an automatic and accurate processing using computer is essential because of the rapid increase of travelers. The determination of forged passports plays an important role in the immigration control system. Hence, as the preprocessing phase for the determination of forged passports, this paper proposes a novel method for the recognition of passports based on the fuzzy binarization and the fuzzy RBF network. First, for the extraction of individual codes for recognizing, this paper targets code sequence blocks including individual codes by applying Sobel masking, horizontal smearing and a contour tracking algorithm on the passport image. Then the proposed method binarizes the extracted blocks using fuzzy binarization based on the trapezoid type membership function. Then, as the last step, individual codes are recovered and extracted from the binarized areas by applying CDM masking and vertical smearing. This paper also proposes an enhanced fuzzy RBF network that adapts the enhanced fuzzy ART network for the middle layer. This network is applied to the recognition of individual codes. The results of the experiments for performance evaluation on the real passport images showed that the proposed method has the better performance compared with other approaches.

생성적 적대 신경망을 활용한 부분 위변조 이미지 생성에 관한 연구 (A Study on Image Creation and Modification Techniques Using Generative Adversarial Neural Networks)

  • 송성헌;최봉준;문미경
    • 한국전자통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.291-298
    • /
    • 2022
  • 생성적 적대 신경망(Generative Adversarial Networks, GAN)은 내부의 두 신경망(생성망, 판별망)이 상호 경쟁하면서 학습하는 네트워크이다. 생성자는 현실과 가까운 이미지를 만들고, 구분자는 생성자의 이미지를 더 잘 감별하도록 프로그래밍 되어있다. 이 기술은 전체 이미지 X를 다른 이미지 Y로 생성, 변환 및 복원하기 위해 다양하게 활용되고 있다. 본 논문에서는 원본 이미지에서 부분 이미지만 추출한 후, 이를 자연스럽게 다른 객체로 위변조할 수 있는 방법에 관해 기술한다. 먼저 원본 이미지에서 부분 이미지만 추출한 후, 기존에 학습시켜놓은 DCGAN 모델을 통해 새로운 이미지를 생성하고, 이를 전체적 스타일 전이(overall style transfer) 기술을 사용하여 원본 이미지의 질감과 크기에 어울리도록 리스타일링(re-styling) 한 후, 원본 이미지에 자연스럽게 결합하는 과정을 거친다. 본 연구를 통해 원본 이미지의 특정 부분에 사용자가 원하는 객체 이미지를 자연스럽게 추가/변형할 수 있음으로써 가짜 이미지 생성의 또 다른 활용 분야로 사용될 수 있을 것이다.

Freehand Forgery Detection Using Directional Density and Fuzzy Classifier

  • Han, Soowhan;Woo, Youngwoon
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.250-255
    • /
    • 2000
  • This paper is concerning off-line signature verification using a density function which is obtained by convolving the signature image with twelve-directional 5$\times$5 gradient masks and the weighted fuzzy mean classifier. The twelve-directional density function based on Nevatia-Babu template gradient is related to the overall shape of a signature image and thus, utilized as a feature set. The weighted fuzzy mean classifier with the reference feature vectors extracted from only genuine signature samples is evaluated for the verification of freehand forgeries. The experimental results show that the proposed system can classify a signature whether genuine or forged with more than 98% overall accuracy even without any knowledge of vaned freehand forgeries.

  • PDF