• Title/Summary/Keyword: Forged Part

Search Result 99, Processing Time 0.023 seconds

Process Design to Prevent Internal & External Defects of Cold Extruded Products with Double Ribs (이중 리브를 가진 냉간 압출품의 내.외부 결함 방지를 위한 공정 설계)

  • 김동진;김병민
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.612-619
    • /
    • 1999
  • Internal and external defects of an inner pulley for automobile air conditioner are investigated in this study. Inner pulley is a part of compressor clutch assembly of automobile air conditioner. In cold forging of inner pulley, the design requirement are to keep the same height of the inner rib and outer one and to make uniform distribution of hardness in the forged product. At the end of the forging of inner pulley, the piping defect as an external defect begins to form at the back center of the billet. The internal crack as an internal defect also occur at the adiabatic shear band which usually has maximum ductile fracture value. It is important to predict when the internal and external defects occur during the deformation process, in order to minimize the amount of discard that is generated. The finite element simulations are applied to analyze the defects. The validity of the computational results are examined by experiments. These computational results are in good agreement with the experimental ones.

  • PDF

FE Analysis of Forged Parts of Suspension Bridge : cases of Strand Shoe and Hanger Socket (입체요소를 이용한 현수교 주단강품의 유한요소해석 : 스트랜드슈와 행어소켓)

  • 최창근;이태열;노혁천;김재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.149-156
    • /
    • 1998
  • In suspension bridges, the axial farces in the wires are transferred by side pressure on the semicircular face, and further from the strand shoe through rods to a base plate fixed to the massive concrete part of the anchor block. For prefabricated strands the most common way of anchoring is by socketing the ends of the strands. In this study, strand shoe and hanger socket are analyzed far various load conditions using Finite Element Method. The finite element models are built using MSC/PATRAN and analysis is carried out using MSC/NASTRAN. Results are again completely processed using MSC/PATRAN. From the results of the analysis, trends of deformation and stress distribution are reviewed and important factors to consider in the design of strand shoe and hanger socket are discussed.

  • PDF

Prediction of Microstructure evolutions during hot-working of AZ31 Mg alloy using Processing map (Processing map을 이용한 AZ31 Mg합금의 미세조직예측)

  • Lee, Byoung-Ho;Lee, Chong-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.31-34
    • /
    • 2007
  • In this study, optimum processing condition of AZ31 Mg alloy was investigated utilizing processing map and constitutive equation considering microstructure evolution (dynamic recrystallization) during hot-working. A series of mechanical tests were conducted at various temperatures and strain rates to construct a processing map and to formulate the recrystallization kinetics and grain size relation. Dynamic recrystallization (DRX) was observed to occur revealing maximum intensity at a domain of $250^{\circ}C$ and 1/s. The effect of DRX kinetics on microstructure evolution was implemented in a commercial FEM code followed by remapping of the state variables. The volume fraction and grain size of deformed part were predicted using a modified FEM code and compared with those of actual hot forged one. A good agreement was observed between the experimental results and predicted ones.

  • PDF

Forging of Long Hollow Shafts of Hard-to-Form Material by Hollow Shaft Extrusion after Piercing with Back Pressing (후방 가압식 피어싱 및 중공축 압축 공법에 의한 난성형 재료 중공장축의 단조)

  • Jun, B.Y.;Lee, J.H.;Eom, J.G.;Park, J.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.338-343
    • /
    • 2007
  • We presented a special method of forging hollow shafts of hard-to-form material, which is composed of piercing with back pressing and hollow shaft extrusion. The presented method was applied to cold forging a bushing of an excavator. The finite element simulation technology was employed for developing the optimized process and the predictions were compared with the experiments. The method was also applied to an automotive part and was verified to be powerful for manufacturing the cold forged hollow shafts of the hard-to-form materials.

  • PDF

Development of the Sub Gear for the Scissors Gear System for Automobile Engines

  • Nakazawa, Katsuhito;Nagata, Toshihiko;Motooka, Naoki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.756-757
    • /
    • 2006
  • P/M enables the economical production of components for many kinds of gears. Functionally, the sub gear requires high tooth accuracy and bending fatigue strength. The whole tooth profile was sized after sintering to satisfy the gear tooth accuracy specification. The part was redesigned to reduce machining requirements. The required bending fatigue strength was achieved through appropriate material choice and induction of compressive residual stress by shotpeening after carburizing. The P/M sub gear replaced a forged steel gear, satisfied performance requirements, expanded the use of P/M applications and provided over 30% cost reduction.

  • PDF

Secure and Efficient Secret Sharing Scheme Based on Wide Pipe Hash Function (광역 파이프 해쉬 함수에 기반한 안전하고 효율적인 비밀분산)

  • Kim, Hie-Do;Won, Dong-Ho
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.831-836
    • /
    • 2006
  • In this paper, we propose a secure and efficient secret sharing scheme Based on wide pipe hash function This scheme provides the property to share multiple secrets and allows participants to be added/deleted dynamically, without haying to redistribute new secret shares. Proposed scheme has advantage to detect cheating and identify of all cheater, regardless of their number. Futhermore, it is more secure and efficient than previous schemes based on hash function.

The Effect of Stress Ring for the Design of Precision Cold Forging Die (정밀 냉간단조 금형설계를 위한 보강링의 영향)

  • Hur, Kwan-Do;Choi, Young;Yeo, Hong-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.145-151
    • /
    • 2001
  • The dimensional accuracy of the cold forged part is depended on the elastic characteristics of the die. To increase the stiffness of the prestressed die, the first stress ring of the tungsten carbide alloy (WC) is considered. For the design, Lame's equation is used. Diameter ratios and interferences have been determinated by maximum inner pressure without yielding of materials. The design of the prestressed die has been compared with the conventional one. For the comparison, the FE-analysis using ANSYS has been performed. The results indicate that the prestressed die with the high stiffness can be obtained by the using the high stiffness material as the first stress ring.

  • PDF

The Technology to Control the Flow Velocity of Non-Symmetric Rib-Web Shape Hot Forged Part (비대칭 리브-웨브형상 열간 단조품의 변형 속도 제어 기술)

  • 이영선;이정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.209-215
    • /
    • 2000
  • Precision forging technology that can control flow velocity of workpiece have been developed to minimize the amounts of machining. To get the uniform rib length, flow velocity distribution is needed to be estimated and controlled. Computer-aided design is known for very effective to estimate the deformation behavior and design the die for controlling the flow velocity. In this study, die design to control the deformation velocity are investigated using the DEFORM-2D about rib-web shape parts. Also we can get uniform rib length by enforcing the back pressure at end section of rib. The applied load of back pressure farming is lower than that of conventional forging. These results are analysed and confirmed by the experiment.

  • PDF

Finite Element Analysis for Optimizing the Initial Thickness of an Under-drive Brake Piston used in a Automatic Transmission (자동변속기용 언더 드라이브 브레이크 피스톤의 두께 최적화를 위한 유한요소해석)

  • Lee, J.S.;Yoon, J.H.;Lee, J.H.;Kim, S.H.;Hong, E.C.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.95-102
    • /
    • 2014
  • The under-drive brake piston is an important component in automotive transmissions. It changes the velocity by controlling the gear ratio. It has been traditionally manufactured by hot forging. Recently, there has been an effort to replace this traditional manufacturing method with cold forging in order to improve the dimensional accuracy and decrease the surface roughness. Cold forging uses a smaller amount of initial material and also has a shorter cycle time since the forged surface can be the final surface without the need of post-processing such as machining or grinding. In the current study, finite element analysis was conducted to evaluate a process design using an initial plate with reduced thickness. This smaller thickness decreases the amount of material needed for the part as well as the machining to produce the final product.

A Study on the Experimental and Theoretical Analysis About the Elastic Deflections of Die for Cold Forging (냉간 단조용 금형의 탄성 변형에 관한 실험 및 이론적 연구)

  • 이영선;이대근;이정환
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.171-178
    • /
    • 2002
  • The elastic deflections of the cold forging die influence the dimensional accuracy of forged parts. The die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during the loading, unloding and ejecting stage with experimental and FEM analysis. Uni-axial strain gages are used to measure elastic strain of die during each forging stage. Strain gages are attached un the upper surface of die. A commercial F.E.M. code, DEFORM$-2D^{TM}$ is used to predict the elastic strains of die, to be compared those by experiments. Two modelling approaches are used to define the reasonable analysis method. The first of the two modelling approaches is to regard the die as rigid body over forging cycle. And then, the die stress is analyzed by loading the die with pressure from the deformed part. The other is to regard the die as elastic body from forging cycle. The elastic strain of tool is calculated and the tool is elastically deformed at each strep. The calculated results under the elastic die assumption are well agreed wish experimental data using the strain gages.