• Title/Summary/Keyword: Forge welding

Search Result 11, Processing Time 0.023 seconds

A Comparative Study on the Surface Patterns Applied to the Traditional Refining and Forge Welding Process Using Iron (철을 이용한 전통 정련·단접 과정 적용 소재별 표면무늬 금속학적 비교 연구)

  • Oh, Min Jee;Cho, Sung Mo;Cho, Nam Chul;Han, Jeong Wook
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.440-452
    • /
    • 2019
  • This research has analyzed SI, the traditional steel, and SIHS(SI + HS), SICS(SI + CS), and SINiS(SI + NiS), the materials that were produced through welding and reprocessing three modern steel- HS, CS, and NiS- that have different carbon content. The purpose of the analyzation was to improve the definition of the multi-layered pattern that appears in the forging process. In observing modified structures on the commissures of three modern steel that have different carbon component to the SI, SINiS produced the most significant multi-layered pattern as well as the excellent welding quality. The excellent welding quality was due to the content of nickel which helped the forge welding process with other materials. There was no significant difference in crystal grain per materials, and SICS showed the highest hardness. At the measurement of EPMA for commissures of the materials, SINiS showed the highest definition of the multi-layered pattern due to the nickel and carbon content. The results above showed that the carbon steel with nickel content is the best material for the most definite multi-layered pattern, expressed from the multi-layered structure which is a characteristic of traditional forge welding technology. It is expected that the result of this research can be utilized as the technical data in further researches regarding the relics excavated from ancient welding process and their multi-layered structure and patterns.

Material Characteristics of Forge Welded Bar and By-product through Reproduction Experiment to the Refining and Forge Welding Process (정련·단접 공정 재현 실험을 통해 생산된 소재 및 부산물의 재료학적 특성)

  • Oh, Min Jee;Cho, Hyun Kyung;Cho, Nam Chul;Han, Jung Uk
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • This study analyzed the influence of folding time on the forge welded bar and hammer scale produced using the traditional refining and forge welding reproduction experiment. In the case of the forge welded bar, increasing the forging time decreased the percentage of impurities and porosity from 26.09% to 1.8%. Additionally, the hardness increased by an average of 36.88 HV. In other words, the microstructure gradually became more precise. For the hammer scale, the amount of T Fe increased with forging time. X-ray diffraction analysis revealed the presence of quartz, fayalite, $w{\ddot{u}stite$, and magnetite. The amount of quartz decreased as the forging time increased. In addition, as the forging time increased, the granular $w{\ddot{u}stite$ changed into a cohesive, long, white band. The results provide information on the characteristics of the forge welded bar and hammer scale produced in the refining and forging process. This information can be used as technical data for ancient steel making processes as well as for future technological systems.

Weld Defect Formation Phenomena during High Frequency Electric Resistance Welding

  • Choi, Jae-Ho;Chang, Young-Seup;Kim, Yong-Seog
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.267-273
    • /
    • 2001
  • In this study, welding phenomena involved in formation of penetrators during high frequency electric resistance welding were investigated. High speed cinematography of the process revealer that a molten bridge between neighboring skelp edges forms at apex point and travels along narrow gap toward to welding point at a speed ranging from 100 to 400 m/min. The bridge while moving along the narrow gap swept away oxide containing molten metal from the gap, providing oxide-free surface for a forge-welding at upsetting stand frequency of the budge formation, travel distance and speed of the bridge were affected by the heat input rate into strip. The travel distance and its standard deviation were found to have a strong relationship with the weld defect density. Based on the observation, a new mechanism of the penetrator formation during HF ERW process is proposed.

  • PDF

강의 마찰용접에 미치는 탄소당량의 영향

  • 나석주;양영수
    • Journal of Welding and Joining
    • /
    • v.4 no.3
    • /
    • pp.32-42
    • /
    • 1986
  • In this study, the influence of carbon equivalents on friction welds of dissimilar steels was investigated. Four types of carbon steels with 10mm diameter were welded to a high-speed tool steel SKH 9. Main experimental results could be summarized as follows (1) Under constant friction pressure, the friction time increased almost linearly with the increasing burn-off length, while the forge length decreased almost linearly. (2) The maximum hardness in carbon steels increased almost linearly with the increasing carbon equivalent, but was much lower than that in the high speed steel. (3) After quenching and tempering of dissimilar steel friction welds, the hardness in carbon steel weldments became similar as that in the base metal, while the hardness in SKH 9 weld was still higher that of the base metal. (4) Relative movement in the friction phae occurred not at the interface of the weldments, but in the high speed steed steel near the interface. (5) For considered material combinations and welding parameters, most of fractures in tension and twisting tests occurred in the base metal. And welds with so high strength could produced in a wide range of welding parameters.

  • PDF

The Study for Development of Damper Case Production Technique using Incremental Forming (Incremental Forming 기술을 적용한 Damper Case 생산 기술 개발에 관한 연구)

  • Park, Jeong-Ho;Lee, Tae-Won;Jeong, Young-Duk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.72-78
    • /
    • 2011
  • Currently, for the damper case, the material produced by cast/forge welding is mechanically processed and then the final product is mass-produced. By cutting the cast/forge welded material, the issues of excessive cutting time, multiple process production, and a large amount of chips (40% loss from the original material) arise, causing increased production cost and reduced profitability. Thus, in this study, the incremental forming technology which generates no chips was applied in production. Analysis was excuted for 1st and 2nd works by change of tool diameter and working tool. For this, 3D molding and analysis were executed, which was applied to the processing the result, successful processing could be achieved through a few trials of molding processing according to tool forming and rotation counts.

Devel opment of Weld Strength Analysis for Dessimilar Metal Friction Welds by Ultrasonic Technique (초음파법에 의한 이종재료 마찰용접강도 해소법의 개발)

  • 오세규;김동조
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.135-149
    • /
    • 1988
  • Friction welding has been shown to have significant economic and technical advantages. However, one of the major concerns in using friction welding is the reliability of the weld quality. No reliable nondestructive test method is available at present for detecting weld quality, particularly in a production environment. Friction welds are formed by the mechanisms of diffusion as well as mechanical interlocking. The severe plastic flow at the interface by forge action of the process brings the subsurfaces so close together that detection of any unbonded area becomes very difficult. This paper presents an attempt to determine the friction weld strength quantitatively using the ultrasonic pulse-echo method. Instead of detecting flaws or cracks at the interface, the new approach calculates the coefficient of reflection based on measured amplitudes of the echoes. It has been finally confirmed that this coefficient could provide the quantitative relationship to the weld quality such as tensile strength, torsional strength, impact value, hardness, etc. So a new nondestructive analysis system of friction weld strength of dissimilar metals using an ultrasonic technique could be well developed.

  • PDF

A Feasibility Study on Dissimilar Metals Friction Weld Strength Analysis by Ultrasonic Techniques (초장파에 의한 이종재 마찰용접 강도해석 가능성에 관한 연구)

  • 오세규;김동조
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 1986
  • Friction Welds are formed by the mechanisms of diffusion as well as mechanical inter-locking. The severe plastic flow at the interface by the forge action of the process brings the subsurface so close together that detection of any unbounded area becomes very difficult. No reliable method is available so fat to determine the weld quality nondestructively. The paper presents an attempt to determine weld strength quantitatively using the ultrasonic pulseecho method. The new approach calculates the coefficient of reflection based on measured amplitudes of the echoes. This coefficient provides a single quantitative measurement which involves both acoustic energy reflected at the welded interface as well as transmitted across the interface. As a result, it was known that the quantitative relationship between the coefficient and the weld strength (torsional strength) could be drawn.

  • PDF

Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630 (관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響))

  • Sae-Kyoo,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.2
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

Neutron imaging for metallurgical characteristics of iron products manufactured with ancient Korean iron making techniques

  • Cho, Sungmo;Kim, Jongyul;Kim, TaeJoo;Sato, Hirotaka;Huh, Ilkwon;Cho, Namchul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1619-1625
    • /
    • 2021
  • This paper demonstrates the possible nondestructive analysis of iron artifacts' metallurgical characteristics using neutron imaging. Ancient kingdoms of the Korean Peninsula used a direct smelting process for ore smelting and iron bloom production; however, the use of iron blooms was difficult because of their low strength and purity. For reinforcement, iron ingots were produced through refining and forge welding, which then underwent various processes to create different iron goods. To demonstrate the potential analysis using neutron imaging, while ensuring artifacts' safety, a sand iron ingot (SI-I) produced using ancient traditional iron making techniques and a sand iron knife (SI-K) made of SI-I were selected. SI-I was cut into 9 cm2, whereas the entirety of SI-K was preserved for analysis. SI-I was found to have an average grain size of 3 ㎛, with observed α-Fe (ferrite) and pearlite with a body-centered cubic (BCC) lattice structure. SI-K had a grain size of 1-3 ㎛, α-Ferrite on its backside, and martensite with a body-centered tetragonal (BCT) structure on its blade. Results show that the sample's metallurgical characteristics can be identified through neutron imaging only, without losing any part of the valuable artifacts, indicating applicability to cultural artifacts requiring complete preservation.