• Title/Summary/Keyword: Forest-Fire-Detection

Search Result 74, Processing Time 0.021 seconds

Study on fire smoke identification method based on SVM and K fold cross verification fusion algorithm (SVM과 K 접힘 교차 검증 융합 알고리즘 기반의 화재 연기 식별 방법 연구)

  • Wang Yudong;Sangbong Park;Jeonghwa Heo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.843-847
    • /
    • 2023
  • In this paper, we propose a model for detecting efficient fire identification to prevent fires that can lead to various industrial accidents, farmland and large forest fires, with the widespread use of various chemicals and flammable substances as modern technology advances. This paper presents an algorithm that can detect fire smoke in a high-efficiency and short time using images, and an algorithm based on SVM(Support Vector Machine) and K fold cross-verification technologies. By analyzing images, fire and smoke detection algorithms have relatively superior detection performance compared to existing algorithms, and the analysis of fire and smoke characteristics detected in this paper is analyzed stably and efficiently and is expected to be used in various fields that may be exposed to fire risks in the future.

Active Fire Detection Using Landsat 8 OLI Images: A Case of 2019 Australia Fires (Landsat 8 OLI 영상을 이용한 산불탐지: 2019년 호주 산불을 사례로)

  • Kim, Nari;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.775-784
    • /
    • 2020
  • Recent global warming and anthropogenic activities have caused more frequent and massive wildfires with longer durations and more significant damages. MODIS has been monitoring global wildfires for almost 20 years, and GK2A and Himawari-8 are observing the wildfires in East Asia 144 times a day. However, the spatial resolution of 1 to 2 km is not sufficient for the detection of small and medium-size active fires, and therefore the studies on the active fire detection using high-resolution images are essential. However, there is no official product for the high-resolution active fire detection. Hence, we implemented the active fire detection algorithm of Landsat 8 and carried out a high-resolution-based detection of active fires in Australia in 2019, followed by the comparisons with the products of Himawari-8 and MODIS. Regarding the intense fires, the three satellites showed similar results, whereas the weak igniting and extinguishing fires or the fires in narrow areas were detected by only Landsat 8 with a 30m resolution. Small-sized fires, which are the majority in Korea, can be detected by the high-resolution satellites such as Landsat 8, Sentinel-2, Kompsat-3A, and the forthcoming Kompsat-7. Also, a comprehensive analysis together with the geostationary satellites in East Asia such as GK2A, Himawari-8, and Fengyun-3 will help the interoperability and the improvement of spatial and temporal resolutions.

Wild Fire Monitoring System using the Image Matching (영상 접합을 이용한 산불 감시 시스템)

  • Lee, Seung-Hee;Shin, Bum-Joo;Song, Bok-Deuk;An, Sun-Joung;Kim, Jin-Dong;Lee, Hak-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.6
    • /
    • pp.40-47
    • /
    • 2013
  • In case of wild fire, early detection of wild fire is the most important factor in minimizing the damages. In this paper, we suggest an effective system that detects wild fire using a panoramic image from a single camera with PAN/TILT head. This enables the system to detect the size and the location of the fire in the early stages. After converting RGB image input to color YCrCb image, the differential image is used to detect changes in movement of the smoke to determine the regions which may be prone to forest fire. Histogram analysis of fire flame is used to determine the possibility of fire in the predetermined regions. In addition, image matching and SURF were used to create the panoramic image. There are many advantages in this system. First of all, it is very economical because this system needs only a single camera and a monitor. Second, it shows the live image of wide view through panoramic image. Third, this system can reduce the quantity of saved data by storing panoramic images.

Deforestation Analysis Using Unsupervised Change Detection Based on ITPCA (ITPCA 기반의 무감독 변화탐지 기법을 이용한 산림황폐화 분석)

  • Choi, Jaewan;Park, Honglyun;Park, Nyunghee;Han, Soohee;Song, Jungheon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1233-1242
    • /
    • 2017
  • In this study, we tried to analyze deforestation due to forest fire by using KOMPSAT satellite imagery. For deforestation analysis, unsupervised change detection algorithm is applied to multitemporal images. Through ITPCA (ITerative Principal Component Analysis) of NDVI (Normalized Difference Vegetation Index) generated from multitemporal satellite images before and after forest fire, changed areas due to deforestation are extracted. In addition, a post-processing method using SRTM (Shuttle Radar Topographic Mission) data is involved in order to minimize the error of change detection. As a result of the experiment using KOMPSAT-2 and 3 images, it was confirmed that changed areas due to deforestation can be efficiently extracted.

Time series Multilayered Random Forest Without Backpropagation and Application of Forest Fire Early Detection (역전파가 필요없는 시계열 다층 랜덤 포레스트와 산불 조기 감지의 응용)

  • Kim, Sangwon;Sanchez, Gustavo Adrian Ruiz;Ko, Byoung Chul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.660-661
    • /
    • 2020
  • 본 논문에서는 기존 인공 신경망 기반 시계열 학습 기법인 Recurrent Neural Network (RNN)의 많은 연산량 및 고 사양 시스템 요구를 개선하기 위해 랜덤 포레스트 (Random Forest)기반의 새로운 시계열 학습 기법을 제안한다. 기존의 RNN 기반 방법들은 복잡한 연산을 통해 높은 성능을 달성하는 데 집중하고 있다. 이러한 방법들은 학습에 많은 파라미터가 필요할 뿐만 아니라 대규모의 연산을 요구하므로 실시간 시스템에 적용하는데 어려움이 있다. 따라서 본 논문에서는, 효율적이면서 빠르게 동작할 수 있는 시계열 다층 랜덤 포레스트(Time series Multilayered Random Forest)를 제안하고 산불 조기 탐지에 적용해 기존 RNN 계열의 방법들과 성능을 비교하였다. 다양한 산불화재 실험데이터에 알고리즘을 적용해본 결과 GPU 상에서 방대한 연산을 수행하는 RNN 기반 방법들과 비교해 성능적인 한계가 존재했지만 CPU 에서도 빠르게 동작 가능하므로 성능의 개선을 통해 다양한 임베디드 시스템에 적용 가능하다.

  • PDF

Fire-Smoke Detection Based on Video using Dynamic Bayesian Networks (동적 베이지안 네트워크를 이용한 동영상 기반의 화재연기감지)

  • Lee, In-Gyu;Ko, Byung-Chul;Nam, Jae-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.388-396
    • /
    • 2009
  • This paper proposes a new fire-smoke detection method by using extracted features from camera images and pattern recognition technique. First, moving regions are detected by analyzing the frame difference between two consecutive images and generate candidate smoke regions by applying smoke color model. A smoke region generally has a few characteristics such as similar color, simple texture and upward motion. From these characteristics, we extract brightness, wavelet high frequency and motion vector as features. Also probability density functions of three features are generated using training data. Probabilistic models of smoke region are then applied to observation nodes of our proposed Dynamic Bayesian Networks (DBN) for considering time continuity. The proposed algorithm was successfully applied to various fire-smoke tasks not only forest smokes but also real-world smokes and showed better detection performance than previous method.

Mapping Burned Forests Using a k-Nearest Neighbors Classifier in Complex Land Cover (k-Nearest Neighbors 분류기를 이용한 복합 지표 산불피해 영역 탐지)

  • Lee, Hanna ;Yun, Konghyun;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.883-896
    • /
    • 2023
  • As human activities in Korea are spread throughout the mountains, forest fires often affect residential areas, infrastructure, and other facilities. Hence, it is necessary to detect fire-damaged areas quickly to enable support and recovery. Remote sensing is the most efficient tool for this purpose. Fire damage detection experiments were conducted on the east coast of Korea. Because this area comprises a mixture of forest and artificial land cover, data with low resolution are not suitable. We used Sentinel-2 multispectral instrument (MSI) data, which provide adequate temporal and spatial resolution, and the k-nearest neighbor (kNN) algorithm in this study. Six bands of Sentinel-2 MSI and two indices of normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as features for kNN classification. The kNN classifier was trained using 2,000 randomly selected samples in the fire-damaged and undamaged areas. Outliers were removed and a forest type map was used to improve classification performance. Numerous experiments for various neighbors for kNN and feature combinations have been conducted using bi-temporal and uni-temporal approaches. The bi-temporal classification performed better than the uni-temporal classification. However, the uni-temporal classification was able to detect severely damaged areas.

Satellite-based Forest Withering Index for Detection of Fire Burn Area: Its Development and Application to 2019 Kangwon Wildfires (산불피해지 탐지를 위한 위성기반 산림고사지수 개발 및 2019년 4월 강원 산불 사례에의 적용)

  • Park, Seong-Wook;Lee, Soo-Jin;Chung, Chu-Yong;Chung, Sung-Rae;Shin, Inchul;Jung, Won-Chan;Mo, Hee-Sook;Kim, Sang-Il;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.343-346
    • /
    • 2019
  • This letter describes a development of satellite-based forest withering index for detection of fire burn area and its application to the Goseong-Sokcho and Gangneung-Donghae wildfires in April 4, 2019. Withered forest has very different spectral characteristics from healthy forest. In particular, a false color composite of R-NIR-G represents such difference very clearly. Using Sentinel-2 images with the forest withering index, we derived the area burned by the wildfires: approximately 701.16 ha for Goseong-Sokcho and approximately 710.60 ha for Gangneung-Donghae, although official record will be announced by the Korean government later.

Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin (Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석)

  • Kim, Byeongcheol;Lee, Kyungil;Park, Seonyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.765-779
    • /
    • 2022
  • This study evaluates the accuracy in identifying the burned area in South Korea using multi-temporal data from Sentinel-2 MSI and Landsat 8/9 OLI. Spectral indices such as the Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), and Burned Area Index (BAI) were used to identify the burned area in the March 2022 forest fire in Uljin. Based on the results of six indices, the accuracy to detect the burned area was assessed for four satellites using Sentinel-2 and Landsat 8/9, respectively. Sentinel-2 and Landsat 8/9 produce images every 16 and 10 days, respectively, although it is difficult to acquire clear images due to clouds. Furthermore, using images taken before and after a forest fire to examine the burned area results in a rapid shift because vegetation growth in South Korea began in April, making it difficult to detect. Because Sentinel-2 and Landsat 8/9 images from February to May are based on the same date, this study is able to compare the indices with a relatively high detection accuracy and gets over the temporal resolution limitation. The results of this study are expected to be applied in the development of new indices to detect burned areas and indices that are optimized to detect South Korean forest fires.

A Study on Real-Time Detection of Physical Abnormalities of Forestry Worker and Establishment of Disaster Early Warning IOT (임업인의 신체 이상 징후 실시간 감지 및 재해 조기경보 사물인터넷 구축에 관한 연구)

  • Park, In-Kyu;Ham, Woon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, we propose the construction of an IOT that monitors foresters' physical abnormalities in real time, performs emergency measures, and provides alarms for natural disasters or heatstroke such as a nearby forest fire or landslide. Nodes provided to foresters include 6-axis sensors, temperature sensors, GPS, and LoRa, and transmit the measured data to the network server through the gateway using LoRa communication. The network server uses 6-axis sensor data to determine whether or not a forester has any signs of abnormal body, and performs emergency measures by tracking GPS location. After analyzing the temperature data, it provides an alarm when there is a possibility of heat stroke or when a forest fire or landslide occurs in the vicinity. In this paper, it was confirmed that the real-time detection of physical abnormalities of foresters and the establishment of disaster early warning IOT is possible by analyzing the data obtained by constructing a node and a gateway and constructing a network server.