DOI QR코드

DOI QR Code

Deforestation Analysis Using Unsupervised Change Detection Based on ITPCA

ITPCA 기반의 무감독 변화탐지 기법을 이용한 산림황폐화 분석

  • Received : 2017.11.10
  • Accepted : 2017.12.14
  • Published : 2017.12.31

Abstract

In this study, we tried to analyze deforestation due to forest fire by using KOMPSAT satellite imagery. For deforestation analysis, unsupervised change detection algorithm is applied to multitemporal images. Through ITPCA (ITerative Principal Component Analysis) of NDVI (Normalized Difference Vegetation Index) generated from multitemporal satellite images before and after forest fire, changed areas due to deforestation are extracted. In addition, a post-processing method using SRTM (Shuttle Radar Topographic Mission) data is involved in order to minimize the error of change detection. As a result of the experiment using KOMPSAT-2 and 3 images, it was confirmed that changed areas due to deforestation can be efficiently extracted.

본 연구에서는 KOMPSAT 위성영상을 활용하여 산불에 의한 산림황폐화 발생 지역을 탐지하고자 하였다. 산림황폐화 분석을 위하여 다시기 위성영상에 무감독 변화탐지 기법을 적용하고자 하였다. 산불 전후에 대한 다시기 영상으로부터 생성한 NDVI(Normalized Difference Vegetation Index)에 ITPCA(ITerative Principal Component Analysis)를 적용하여 산림황폐화에 의하여 발생한 변화지역을 추출하였다. 또한, SRTM(Shuttle Radar Topographic Mission)자료를 이용한 후처리 기법을 통하여 오탐지를 최소화하고자 하였다. KOMPSAT-2, 3 영상을 이용한 실험결과, 해당 지역 내에 존재하는 산림황폐화 지역을 효과적으로 추출할 수 있음을 확인하였다.

Keywords

References

  1. Choi, J. H. and J. S. Um, 2012. Application of satellite image to evaluate UN-REDD registration potential of North Korea: a case study of Mt.Geumgang, Journal of the Korean Society for Geospatial Information System, 20(4): 77-87. https://doi.org/10.7319/kogsis.2012.20.4.077
  2. Choi, J., 2015. Unsupervised change detection for very high-spatial resolution satellite imagery by using object-based IR-MAD algorithm, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(4): 297-304. https://doi.org/10.7848/ksgpc.2015.33.4.297
  3. Falco, N., P. R. Marpu, and J. A. Benediktsson, 2016. A toolbox for unsupervised change detection analysis, International Journal of Remote Sensing, 37(7): 1505-1526. https://doi.org/10.1080/01431161.2016.1154226
  4. Holmegre, P., T. Clairs, and T. Kasten, 2008. Role of satellite remote sensing in REDD, UN-REDD Programme.
  5. Lee, S., 2004. Situation of degraded forest land in DPRK and strategies for forestry cooperation between South and North Korea, Journal of Agriculture & Life Science, 38(3): 101-113.
  6. Margono, B. A., S. Turubanova, I. Zhuravleva, P. Potapov, A. Tyukavina, A. Baccini, S. Goetz, and M. C. Hansen, 2012. Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010, Environmental Research Letters, 7(3): 034010. https://doi.org/10.1088/1748-9326/7/3/034010
  7. Oh, J. H. and C. N. Lee, 2015. Urban change detection between heterogeneous images using the edge information, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(4): 259-266. https://doi.org/10.7848/ksgpc.2015.33.4.259
  8. Piao, D., W. Lee, Y. Zhu, M. Kim, and C. Song, 2016. Assessment of forest degradation and carbon storage for REDD+ project in North Korea, Korean Journal of Environmental Biology, 34(1): 1-7. https://doi.org/10.11626/KJEB.2016.34.1.001
  9. Qamer, F. M., K. Shehzad, S. Abbas, M. Murthy, C. Xi, H. Gilani, and B. Bajracharya, 2016. Mapping deforestation and forest degradation patterns in western Himalaya, Pakistan, Remote Sensing, 8(5): 385. https://doi.org/10.3390/rs8050385
  10. Wiemker, R., A. Speck, D. Kulbach, H. Spitzer, and B. Johann. 1997. Unsupervised robust change detection on multispectral imagery using spectral and spatial features, Proc. of the Third International Airborne Remote Sensing Conference and Exhibition, Copenhagen, Denmark, Jul. 7-10.
  11. Yoo, S. J., W. K. Lee, S. H. Lee, E. S. Kim, and J. Y. Lee, 2011. Approach for suitable site selection and analysis for reforestation CDM using satellite image and spatial data in North Korea, Journal of the Korean Society for Geospatial Information System, 19(3): 3-11.

Cited by

  1. 소형객체 변화탐지를 위한 화소기반 변화탐지기법의 성능 비교분석 vol.37, pp.2, 2017, https://doi.org/10.7780/kjrs.2021.37.2.1