• Title/Summary/Keyword: Forest succession

Search Result 328, Processing Time 0.022 seconds

Prediction of Forest Succession in Daecheong Dam River Basin Area Using LANDIS-II (LANDIS-II를 활용한 대청댐 유역 식생천이 예측)

  • Moon, Geon-Soo;Kim, Sung-Yeol;Song, Won-Kyong;Choi, Jaeyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.39-53
    • /
    • 2022
  • The purpose of this study is to find out the applicability of LANDIS-II model to Korea. The case study was carried out in Daecheong Dam basin. In order to operate the model, a total of 63,107 cells of 100x100m unit were constructed, each cell consists of ecoregion map, initial communities map, plant physiological data, and climate change prediction data using SSP2-4.5 scenario. Forest distributions of year 2050 and 2100 were predicted by distribution intensity and interference among trees based on field surveys of 147 points in 2020. As a result, trees of decreased distribution area in the future are in the order of Quercus mongolica, Pinus rigida, Pinus densiflora and Robinia pseudoacacia, which characterized vulnerable to the effects of climate change or artificially planted trees. While warm climate trees of Quercus variabilis, Quercus serrata, Quercus acutissima and Quercus aliana are predicted to increase their distribution area in the order. These results analyzed using the LANDIS-II model are consistent with the studies on potential natural vegetation and succession tendency in Korea. In conclusion, the applicability of LANDIS-II model in Korea is highly effective and it is also expected to serve as a scientific basis for determining forest policies on afforestation and restoration.

An Ecological Study on the Evergreen Broadleaved Forest of Jisimdo (지심도 상록활엽수목의 생태학적 연구)

  • Kim, Joon-Ho
    • Journal of Plant Biology
    • /
    • v.27 no.2
    • /
    • pp.51-60
    • /
    • 1984
  • Jisimdo is an island where evergreen broadleaved forests are well preserved. Soil environments and forest structures of Jisimdo were investigated, and an actual vegetation map and profile diagrams were drawn out. The natural vegetation of Jisimdo was divided into two stand units, one was evergreen broadleaved forest and the other was Pinus thunbergii forest. 26 species were identified as evergreen broadoeaved trees, and among them, Camellia japonica was the dominont of the tree layer of evergreen broadleaved forest. Profile diagram shows that Camellia japonica, with average height of 7∼8m, formed lower tree layer, and laurels like Cinnamomum japonicum, Machilus thunbergii, and Neolitsea sericea formed upper tree layer. In Pinus thunbergii forest, plants of shrub and herb layers were abundant because of much light penetrated into the forest floor, and these layers were largely composed of evergreen broadleaved trees. This fact shows the possibility of succession from Pinus thunbergii forest into evergreen broadleaved forest. Jisimdo is geographically adjacent to Jangseungpo and Okpo, and this increases the economic value of Jisimdo as a place of public resort. It will be necessary from being destroyed by land development and human interferences.

  • PDF

Gugokri-Nongdari Sedimentary Succession and Environment in the Southwestern Eumsung Basin (Cretaceous), Korea (백악기 음성분지 남서부의 구곡리-농다리 퇴적층과 퇴적환경)

  • Ryang, Woo-Hun
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.545-554
    • /
    • 2018
  • The Cretaceous Eumsung (Eumseong) Basin is a pull-apart basin, formed along a series of the Gongju strike-slip faults trending NE-SW. The Nongdari-Meer forest of the Gugokri area in the southwestern part of the basin is comprised of thick purple mudstone, intercalating conglomerate, pebbly sandstone, and green mudstone beds. The succession mainly consists of seven sedimentary facies: stratified conglomerate (C2), conglomerate encased in siltstone (CE), stratified pebbly sandstone encased in siltstone (PSE2), purple sandy siltstone (Zp), green sandy siltstone (Zg), purple mudstone (Mp), and green mudstone (Mg). Sedimentary environment is mainly indicative of alluvial-plain setting in an alluvial-to-lacustrine sedimentary system, developed in the southwestern part of the basin. Geological survey was fulfilled in succession of the Gugokri sedimentary system using 1:5000 topographic map, which resulted in a geological route map. This study newly suggested that there be fluvial systems showing ENE and NNE trends in the study area, based on data of palaeocurrent direction and sedimentary characteristics in new outcrops of the forest. The study also revised the precedent sedimentation model of the Gugokri system.

Plant Community Structure of Pinus densiflora S. et Z. Forest in the Geumjeongsan (Mt.), Busan Metropolitan City (부산광역시 금정산 소나무림 식생구조 연구)

  • Lee, Kyoung-Jae;Kwak, Jeong-In;Kwak, Nam-Hyun;Jang, Jong-Soo
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.4
    • /
    • pp.462-472
    • /
    • 2013
  • This study was carried out to provide a basic data for preservation of Pinus desiflora forest as cultural landscape forest by analyzing characteristics of plant community of P. desiflora forest in Geumjeongsan(mountatin) in Busan city. In order to analyze plant community of P. densiflora in Geumjeongsan, we set up 10 study plots inside and 8 plots outside of Geumjeongsansung(mountain fortress, hereinafter 'Sansung')(unit area: $400m^2$), a total of 18 plots. TWINSPAN analysis divided these 18 study plots into 6 communities which are Querqus serrata-P. desiflora community, P. desiflora community, P. desiflora-Q. serrata community, P. thunbergii-P. densiflora community, P. densiflora-P. thubergii-Q. acutissima community, and P. densiflora-Platycarya strobilacea community. Importance Percentage (I.P.) of each area and DBH class distribution of main species showed that P. densiflora community would succeed to Q. serrata community or C. tschonoskii community. Analysis on tree age found out that communities in the Sansung were 32~37 years old and those outside the Sansung were 44~57 years old. Shannon's species diversity index ranged from 0.4826 to 1.2499. Regarding correlation between species, P. densiflora had negative correlation with Styrax japonica. Based on abovementioned result we expected ecological succession from P. densiflora community to Q. serrata community inside of the Sansung. Outside the Sansung, succession from P. densiflora-P. thunbergii community to C. tschonoskii-Q. serrata community was expected. In order to manage P. densiflora forest as cultural landscape forest, Q. spp in the understory and shrub layer and deciduous broad-leaved arboreal trees should be managed. Tree crown management of deciduous broad-leaved trees in competition with P. desiflora, is also required.

Progressive Succession and Potential Natural Vegetation on the Forest Vegetation in and surrounding Daegu, Korea (대구 인접 지역 삼림식생의 진행천이와 잠재자연식생)

  • Choung, Heung-Lak;Chun, Young-Moon;Lee, Ho-Joon
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.265-275
    • /
    • 2006
  • This study represents the mechanism of progressive succession and potential natural vegetation on the forest vegetation in and surrounding Daegu. As a result of DCA, the feature of community was determined by an altitude and humid gradients. The soil moisture, contents of organic matter and total nitrogen increased as the community developed. In the interspecific association analysis, the forest vegetation was divided into two species groups and they were influenced by temperature and soil moisture. Especially, each two groups showed different stages of vegetation development according to the progressive succession and life form composition supported those results. It was predicted that Quercus variabilis, Q. acutissima, Q. dentata and Pinus densiflora communities would develop into Q. serrata community or Q. mongolica community depending on their location or species composition. In the study area, the potential natural vegetation was divided into 3 communities by biogeographical gradients such as species composition, soil environment, and geographical features: 1)Q. mongolica community in the middle-upper area of the mountain, 2)Q. serrata community in the middle-lower area of the mountain and 3)Carpinus cordata-Acer mono community in the cove area. It is suggested that the Q.mongolica and C.cordata-A.mono communities become actual vegetation and potential natural vegetation. But it is also suggested that the P. densiflora community would be changed into the potential natural vegetation of the Q. mongolica community and Q. serrata community on the basis of the present species composition.

Ecological Management Plan and Biotope Structure of Namsan Urban Natural Park in Seoul (서울 남산도시자연공원의 비오톱 구조 및 생태적 관리방안)

  • Lee Kyong-Jae;Han Bong-Ho;Lee Soo-Dong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.5
    • /
    • pp.102-118
    • /
    • 2004
  • The purpose of this study was to propose an ecological management plan by the comprehensive analysis of biotope structures on Namsan Urban Natural Park in Seoul. Classified by actual vegetation, structure of layer and vegetation damage, biotope structures were composed of forest area, compact management area, herb area, cultivated area and non-ecology(urban) area. Succession had seened to stop in the Native forest. Artifical forest was divided into two types. The first, upper layer, was too dense to accommodate lower layer plants, the other case was the appearance of Quercus spp. and the first stage plants of succession following the declination of the upper layer plants. The soil pH of Nam-san Urban Park was 4.21∼4.51, which meant the soil was becoming acid. As the result of acidity, leaching of available nutrition(K/sup +/, NH₄/sup +/, Ca/sup ++/ etc.) was immediately influenced by the natural ecosystem, influence of acid rain was disturbed to becoming organic matter which was use to plants. In the case of a biotope structure management plan, the urban area was prohibited to spread outside. Cultivated and herb area was regenerated to natural forest. In the forest area, the compact management area was maintained with its present condition, and then it is desirable to make a preservation area and to plant shrubs. Planted Pinus densiflora Community was needed to eliminate competitive species of canopy layer, and plant shrubs. Management of deciduous broad-leaved Comm. was maintained in its present conditionand it is desirable to raise the diversity of the understory and shrub layer. The management of the artifical forest seems to be suitable for Q. spp. community. The care of naturalized plants prevents the expansion and restores the structure of wild plants. The soil management was a marked restoration soil ecosystem in order to prevent soil acid and drying.

A Phytosociological Study of Natural Forest Communities at Mt. Jokye Area (조계산지역(曹溪山地域) 삼림군집(森林群集)의 식물사회학적(植物社會學的) 연구(硏究))

  • Kim, Tae Uk
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.4
    • /
    • pp.418-424
    • /
    • 1987
  • Considering the seral stage of succession, phytosocialogical analysis was carried out to investigate the structure and property of community of Pinus densiflora, Pinus densiflora-Quercus spp.-Carpinus laxiflora, and Quercus spp.-Carpinus laxiflora. The study area included a section of 200m high at the sea level in Mt. Jokye, Seungju-gun, Chunlanam-do. The results show that density of forest trees tended to be decreased, Shannon species diversity index increased, and dominance decreased as seral stage progressed. Patterns of DBH class distribution showed nearly S types. In the study area succession of forest community might progressed toward climax, leading from Pinus densiflora community to Quercus spp.-Carpinus laxiflora community with intermediary Pinus densiflora-Quercus spp.-Carpinus laxiflora community. The fact that there was no pure community of Quercus spp. might be due to the rapid development of forest community investigated.

  • PDF

Phytosociological Characteristics of Qeurcus acutissima Forest in Daecheong-dam basin (대청댐 유역 상수리나무림의 식물사회학적 특성)

  • Kim, Sung-Yeol;Moon, Geon-Soo;Lim, Sung-Been;Paek, Hye-Jung;Song, Won-Kyong;Choi, Jae-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.85-102
    • /
    • 2021
  • Phytosociological characteristics on Quercus acutissima forests distribution in Daechong-dam basin survey has been carried out using Z.-M. School's methodology and numerical-classification analyses. A total of 43 phytosociological relevés were sampled. Syntaxa were described as Oplismenus undulatifolius-Quercus acutissima community(typicum subcommunity, Phryma leptostachya var. asiatica subcommunity, Ulmus davidiana var. japonica subcommunity), Quercus acutissima community and Quercus variabilis-Quercus acutissima community (typicum subcommunity, Castanea crenata subcommunity). The above three plant communities were classified with species composition reflecting local environmental characteristics of mountain topographies, inclination degrees, and rock exposure rates. Conclusively, those communities were recognized as secondary vegetation affected by high intensity and frequency of human impacts as they inhabited in southward hill lands and low lying grounds in mountains adjacent to human settlements and arable lands. Quercus acutissima community was classified as rural type syntax based on their inlandward distribution and species composition differences from urban forests. Afforest process and natural succession were discussed in relation with habitat environmental elements of Quercus acutissima forest in the survey area.

Primary Succession on Talus Area at Mt. Kariwangsan, Korea (가리왕산 일대 돌서렁에서의 일차천이)

  • Lee, Kyu-Song;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.120-130
    • /
    • 1994
  • Stages of vegetation development on talus area were studied to examine temporal changes in species composition and vegetation structure, and to elucidate the mechanism of early patch formation. While ground coverage of lichens, which may form substrate for moss colonization and mitigate the heat-stress on rocks, decreased gradully, coverage of mosses increased slightly during primary succession. Ecological role of mossess related with water retention in community may be very important not only at pioneer stage but also at later stages because of little soil development on this talus area. Species diversity and species richness increased during the early stages of succession. Parthenocis년 tricuspidata and Sorbaria sorbifolia var. stellipa dominated in liana stage, Ulmus davidiana for. suberosa and Lindera obtusiloba in shrub stage, and Fraxinus rhynchophylla and Actinidia arguta in subtree stage, however, was composed of mixed forest of several tree species. U. davidiana for. suberosa, L. obtusiloba, Securinega suffruticosa and Rhus chinensis were relatively important woody species in early patch forming process. The results, however, suggested that early establishment on talus area might be strongly associated with chance for safe-site because both pioneer species and later species could take part in early patch forming process.

  • PDF

Classification and Spatial Distribution of Forest Vegetation Types in Yokjido Island, Korea (욕지도(경남) 산림식생 유형구분과 공간분포 특성)

  • Lee, Bora;Lee, Ho-Sang;Kim, Jun-Soo;Cho, Joon-Hee;Oh, Seung-Hwan;Cho, Hyun-Je
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.345-356
    • /
    • 2022
  • Yokjido is a 15-km2 inhabited island located at the tip of the southeastern coast of the Korean Peninsula. Its forest is mostly composed of substitutional vegetation. Our aim was to provide basic information necessary for the conservation and management of the forest vegetation in Yokjido. We classified the types of existing vegetation using methods of the Zurich-Montpellier school of phytosociology. The resulting vegetation map shows the dominant tree species in the top canopy-layer. A total of 8 vegetation types were identified, which were arranged into a vegetation unit hierarchy of 2 communities, 4 sub-communities, 6 variants, and 2 subvariants. Evaluations of each type showed large and small differences in floristic composition, which reflect anthropogenic influences, site conditions, succession stages, and the establishment period. Moreover, vegetation types differed significantly in terms of species diversity indices; in particular, overall species richness, species diversity, and species evenness tended to increase significantly as the elevation increased. The herbaceous plant species showed the highest positive (+) correlation to x. These results were consistent with those of McCain, who reported that species diversity increases in mountainous areas with relatively low elevations due to the mid-domain effect. The forest succession in Yokjido will potentially enter a mixed-forest stage and then proceed to become an all-evergreen broad-leaved forest.