• Title/Summary/Keyword: Forest succession

Search Result 331, Processing Time 0.027 seconds

Dynamics of the Plant Community Structure and Soil Properties in the Burned and Unburned Areas of the Mt. Ch’olye-san (초례산의 산화지와 비산화지의 식물군집구조 및 토양성분의 동태)

  • Sim, Hak-Bo;Woen Kim
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.417-430
    • /
    • 1996
  • This study was conducted to investigate the developmental process of plant community during the secondary succession and the dynamics of soil properties in the burned and unburned areas of Mt. Ch’oly-san. Owing to the forest fire occurred on April, 1989, the red pine(Pinus densiflora) forest and its floor vegetation were burned down. The floristic composition of burned and unburned areas were composed of 53 and 49 species of vascular plants, respectively. The dominant species based on SDR4 of the burned sites were lespedeza cyrtobotrya (89.62), Miscanthus sinensis var. purpurascens (62.50), and Carex humilis (58.73), Quercus serrata (43.33). In contrast, Pinus densiflora (83.56), Lespedeza cyrtobotrya (55.57), Miscanthus sinensis var. purpurascens (51.88) and Carex humilis (50.41) were dominant in the unburned area. The biological spectra showed the $H-D_1-R_5-e$ type in both the burned and unburned areas. The indices of similarity ($CC_S$) between the two areas were 0.74. Degree of succession (DS) was 604 in the burned area and 802 in the unburned area. From these facts, it is assumed that the succession is rapidly progressing because of the recovery of vegetation. The species diversity ($\={H}$) and evenness index(C) in the burned and unburned areas were 0.15 and 0.18, respectively. Red pine tree did not resprout after scorch by the forest fire, but Lespedeza, Quercus, Rhododendron, Albizzia, and Zanthoxylum resprouted from the roots and trunks after the forest fire. It seems that these species are the fire-resistant species. Soil properties such as soil pH, content of organic matter, available phosphous, total nitrogen, tatal carbon, exchangeable potssium, sodium, calcium, and magnesium increased due to forest fire. These results suggest the intensity of forest fire in the study area was relatively weak. Monthly changes of soil properties were of little significance except for some cases.

  • PDF

Vegetational Structure and the Density of Thinning for the Inducement of the Ecological Succession in Artificial Forest, National Parks - In Case of Chiaksan, Songnisan, Deogyusan, and Naejangsan - (국립공원 인공림 식생구조 및 생태적 천이 유도를 위한 간벌 밀도 연구 - 치악산, 속리산, 덕유산, 내장산을 사례로 -)

  • Kim, Jong-Yup;Lee, Kyong-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.604-619
    • /
    • 2012
  • According to the concept of woodland aesthetic in Germany and forest design in United Kingdom, artificial forest should be restore ecologically step by step in National Park, Korea. This study was carried out to provide the density criterion of thinning for the inducement of the ecological succession by analysing of vegetational structure in Artificial Forest, National Parks. Eleven plots(size is $20m{\times}20m$) were set up in the artificial forest such as Pinus koraiensis forest, Abies holophylla forest, Chamaecyparis obtusa forest, Populus tomentiglandulosa forest, and Larix kaempferi forest and in the natural forest such as Pinus densiflora community, Pinus densiflora-Quercus serrata community, and Quercus serrata community in Chiaksan, Songnisan, Deogyusan, and Naejangsan National Parks, Korea. We classified the artificial forest into undeveloped type of succession, type of alien young trees developing, and early phase type of succession based on the vegetational structure. According to the index of Shnnon's diversity(unit: $400m^2$), undeveloped type of succession was ranged from 0.9681 to 1.1323, type of alien young trees developing was ranged from 1.0192 to 1.1870, early phase type of succession was ranged from 1.3071 to 1.3892, and natural vegetation was ranged from 1.2202 to 1.3428, therefore early phase type of succession forest and natural vegetation are more higher than simple-layered artificial forest with one needle leaf tree species. The limit for the step-by-step thinning was in the range of 30~60%. In case of undeveloped type of succession, we should thin out from large trees throughout three phases, because alien species dominated high value 88~90% in canopy layer. In case of type of alien young trees developing, we should thin out from alien young trees such as Populus tomentiglandulosa throughout one or two phases, because alien species dominated high value 60~97% and young trees with saplings growing up in understory and shrub layer. In case of early phase type of succession, we should thin out from alien trees that compete with native species throughout one or two phases, because alien species dominated less than value 30%.

Restoration of the Seaweed Forest and Algal Succession on a Porous Type (Shaped Half Saw Teeth) Artificial Reef (다공질 인공어초 (반톱니형)에서 진행된 해조천이 및 해중림 조성)

  • Cho, Sung-Hwan;Choi, Chang-Geun;Choa, Jong-Hun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.4
    • /
    • pp.220-225
    • /
    • 2007
  • The succession of marine benthic algae and the restoration of an artificial seaweed forest on a porous type (shaped half saw teeth) artificial reef at Jeju island, Korea was studied. Young thalli of Sargassum horneri and Ecklonia cava were attached to different artificial substrates. In general, the succession on the artificial reefs led from filamentous algae to perennial algae and involved more than 25 species that are useful fishery resources, including E. cava. Coralline algae were dominant on the artificial reefs at the Kangjung site. The maximum algal biomass on the artificial reef in October 2005 was $1,990g/m^2$ at Biyang. In conclusion, a climax community and seaweed forest can be attained one year after the substrate is constructed.

Influence of Spatial Differences in Volcanic Activity on Vegetation Succession and Surface Erosion on the Slope of Sakurajima Volcano, Japan

  • Teramoto, Yukiyoshi;Shimokawa, Etsuro;Ezaki, Tsugio;Nam, Sooyoun;Jang, Su-Jin;Kim, Suk-Woo;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.136-146
    • /
    • 2017
  • We selected 6 plots ($100m^2$) located 2.2-3.8 km from Minamidake Crater on the north flank of Sakurajima Volcano. We conducted a field study to investigate the effects of volcanic activity on vegetation succession and surface erosion rate. The results showed that trees growing in plots further from the crater had a greater diameter at breast height (DBH), total height, and age. In addition, these plots had a greater number of woody plants and species, as well as a greater total cross-sectional area at breast height. The Fisher-Williams index of diversity (${\alpha}$) and the proportion of evergreen broad-leaved trees were higher in plots located further from the crater. Vegetation succession in these plots was not at the level of a climax forest. From 1972 to 2015, the timing for active volcano, the depth of volcanic ash layer, the dry density, and the pH of ground surface were lower for plots located further from the crater. Furthermore, the average annual sheet erosion from 1972 to 2015 was also lower for plots located further away from the crater. Overall, plots further away from the crater have a better environment for vegetation growth and a lower dry density of the volcanic ash surface layer. It is thought that lower dry density results in increased soil permeability, which impedes surface flow. In order to prevent debris-flow disasters, caused by mud and rock flow resulting from impaired soil penetrability, it is essential to promote soil development and restore penetrability by artificial vegetation restoration.

Distinguishing the Effects of Environmental Stress and Forest Succession on Changes in the Forest Floor

  • Arthur, Mary A.;Ruth D. Yanai
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.83-88
    • /
    • 2000
  • When interpreting change over time in forest ecosystems, distinguishing the effects of forest succession from the effects of environmental stress can be difficult. The result may be a simplistic interpretation. citing a specific successional or environmental cause of forest change when both types may be occurring. We present two case studies of changes in the forest floor in northern hardwoods. First, the belief that 50% of soil organic matter is lost in the first 20 years after logging was based on a study comparing northern hardwood stands of different ages. We resampled a series of 13 such stands after an interval of 15 years, and found that the young stands were not, in fact. losing organic matter as rapidly as predicted from the original chronosequence study. The pattern of higher organic matter content in the forest floors of older stands compared to young stands could be equally well explained by changes in logging practices over the last century as by the aging of the stand. The observed pattern of forest floor organic matter as a function of stand age was previously interpreted as a successional pattern, ignoring changes in treatment history. In the second case study, observed losses of base cations from the forest floor were attributed to cation depletion caused by acid rain and declining calcium deposition. We found that young stands were gaining base cations in the forest floor; losses of base cations were restricted to older stands. Differences in litter chemistry in stands of different ages may explain some of the pattern in cation gains and losses. In this case, the contribution of successional processes to cation loss had been overlooked in favor of environmental stress as the dominant mechanism behind the observed changes. Studies of environmental stress use repeated measures over time. but often don't consider stand age as a factor. Studies of successional change often assume that environmental factors remain constant. We were able to consider both forest succession and external factors because we repeatedly sampled stands of different ages.

  • PDF

A Review of Vegetation Succession in Warm-Temperate Evergreen Broad-Leaved Forests -Focusing on Actinodaphne lancifolia Community- (난온대 상록활엽수림 지역의 식생천이계열 고찰 -육박나무군락을 중심으로-)

  • Park, Seok-Gon;Choi, Song-Hyun;Lee, Sang-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.77-96
    • /
    • 2018
  • We investigated and analyzed three Korean island sites (Bijin-do, Ae-do, and Bogil-do) and one Japanese site (Tachibanayama) of sword-leaf litsea (Actinodaphne lancifolia) forests, known as the climax forest, to discuss the vegetation succession sere of warm-temperature evergreen broad-leaved forests. We then reviewed the literature in Korea, Japan, China, and Taiwan to consider the distribution characteristics of evergreen broad-leaved forests, vegetation succession sere, and climax tree species. Although Mt. Tachibana and Ae-do showed the most advanced vegetation structure, the soil and ordination (CCA) analysis indicated that it was not enough to consider that the sword-leaf litsea forest was at the climax stage in the warm-temperature region. The Actinodaphne lancifolia forest is sparsely distributed in Korea and Japan while the common types of vegetation in the warm temperate zone region in East Asia are Machilus spp., Castanopsis spp., and Cyclobalanopsis spp. The vegetation succession sere of the Korean warm-temperature region is thought to have a secondary succession such as Pinus thunbergii, P. densiflora, Q. serrata (early stage) through Machilus thunbergii, innamomum yabunikkei, Neolitsea sericea, Actinodaphne lancifolia (middle stage) to Castanopsis sieboldii, Q. acuta, Q. salicina (climax stage). However, Machilus thunbergii will be the climax species as an edaphic climax in places where there is a strong influence of the sea wind, or it is difficult to supply the seeds of Castanopsis spp. and Cyclobalanopsis spp.

Succession and Stand Dimension Attributes of Pinus thunbergii Coastal Forests after Damage from Diplodia Tip Blight around the Sakurajima Volcano, Southern Kyushu, Japan

  • Teramoto, Yukiyoshi;Shimokawa, Etsuro;Ezaki, Tsugio;Jang, Su-Jin;Kim, Suk-Woo;Lee, Youn-Tae;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.481-489
    • /
    • 2018
  • In this study, the succession and stand dimension attributes related to the disaster prevention function of Pinus thunbergii coastal forests were examined after damage from Diplodia tip blight. In 2015, 101 years after the Taisho eruption, field investigations were performed on the vegetation, soil thickness, and pH of surface soil of P. thunbergii coastal forests in western Sakurajima (Hakamagoshi plot) and Taisho lava flows in southeastern Sakurajima (Seto plot). The Hakamagoshi plot had more woody plant species with larger basal areas than that in the Seto plot. The mean age and height, maximal age and height of plant species, and H/D ratio were all larger in the Hakamagoshi plot than in the Seto plot. These results may be explained by the relatively smaller effect of volcanic ash and gas on forests in the Hakamagoshi plot compared to the Seto plot, resulting in a more suitable environment for many plant species. Although P. thunbergii coastal forests in Sakurajima are currently recovering from damages owing to Diplodia tip blight, there has not yet been a sufficient recovery compared to the results from a 1997 study. Furthermore, the results of assessment based on the H/D ratio and abundance of trees in P. thunbergii forests indicate that both regions are not yet effective in disaster prevention. Thus, it is necessary to establish Pinus trees, which can adjust to harsh environments like coastal areas and are resistant to volcanic ash and gas, to enhance the disaster prevention function of P. thunbergii coastal forests in volcanic regions. It may also be helpful to establish coastal forests with ectotrophic mycorrhizal fungi and organic matter coverage. Additionally, it is necessary to ensure the continuous maintenance of stand density and soil quality, and further develop efforts to prevent Diplodia tip blight and promote forest recovery.

Management Planning and Change for Nineteen Years(1993~2011) of Plant Community of the Pinus densiflora S. et Z. Forest in Namhan Mountain Fortress, Korea (남한산성 소나무림의 19년간(1993~2011년) 식생구조 변화와 관리방안)

  • Lee, Kyong-Jae;Han, Bong-Ho;Lee, Hak-Gi;Noh, Tai-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.559-575
    • /
    • 2012
  • This study, targeting Namhan Mountain Fortress which was designated as a No. 57 national historic site and placed on the World Heritage Tentative List in 2010, was intended to identify the change of vegetation structures by reviewing past references, pictures, research data and additionally conducting a site survey. Also, it was designed to draw up measures for restoring vegetation suitable for historically and culturally valuable Namhan Mountain Fortress. According to the biotope mapping of study site, Quercus spp. forest distributed a greatest part of area with 40.8% of $2,611,823m^2$. Pinus densiflora forest, highly likely to go through ecological succession, was dispersed in the whole region of Cheongryangsan, the area from West Gate to North Gate and the ranges between South Gate to Cheongryangsan with taking 16.5%. Pinus densiflora forest with a low probability of succession amounted to 4.7% and was dispersed mainly in the forest behind Namhansan elementary school. Pinus densiflora going on the ecological succession is distributed a portion of 2.9%. And the currently dying out Pinus densiflora forest amounted to 2.1%. As a result of analysis of the vegetation structure for 19 years, the succession from Pinus densiflora forest to Pinus densiflora and succession from Quercus spp. mixed forest to Quercus spp. forest to Carpinus laxiflora forest were predicted. Additionally, Quercus spp. expanded its dominance over time. According to the characteristics of each classified zone, the site was categorized into $553,508m^2$ area of Pinus densiflora forest area for the landscape maintenance, $114,293m^2$ area of Pinus densiflora forest area for the landscape restoration, $205,306m^2$ area of Pinus densiflora forest area for the disclimax, and $1,169,973m^2$ area of Pinus densiflora forest area for inducing ecological succession.

Community Structure and Vegetation Succession of Carpinus laxiflora Forest Stands in South Korea (우리나라 서어나무 임분의 군집구조와 식생천이)

  • Byeon, Seong-Yeob;Yun, Chung-Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.2
    • /
    • pp.185-202
    • /
    • 2018
  • Many ecological studies regarding forest succession, which is the process of arriving at climax forest through ecological changes, have suggested that Carpinus laxiflora is the leading tree type of the climax forest of temperate zone in South Korea. However, most of these studies on C. laxiflora forest have focused on vegetation structure and succession process in specific areas or regional physiognomical forest communities, and thus some may question whether it is rational to consider C. laxiflora forest as the climax forest in South Korea's temperate forest zone. The purpose of this study was to analyze the vegetation classification, species composition, and stratum structure and to investigate the succession tendency with the vegetation data collected from C. laxiflora forests in 75 quadrates in 17 mountains between 2014 and 2017. We used the phytosociological method to analyze the vegetation structure and the importance value to analyze the stratum structure. The results showed the floristic composition of 6 vegetation units and 9 species groups. The hierarchy of the C. laxiflora community group was represented by the Ulmus laciniata community, Corylus heterophylla community (subdivided Quercus aliena group and Corylus heterophylla typical group), and Rhododendron schlippenbachii community (subdivided Fraxinus chiisanensis group, Carpinus tschonoskii group, and Rhododendron schlippenbachii typical group). Successional tendency of C. laxiflora forest based on the importance of each layer is predicted to be the total of three types such as to maintain the stand (vegetation units 2, 3, and 6), to success the Carpinus cordata forest (vegetation units 1 and 4), and to success Quercus acuta forest (vegetation unit 5).

Vegetation Succession and Vegetation Management of the Pinus densiflora S. et Z. Forest in the Beopjusa Area, Songnisan National $Park^{1a}$ (속리산국립공원 법주사지구 소나무림 식생천이와 식생관리 연구)

  • Lee, Kyong-Jae;Ki, Kyong-Seok;Choi, Jin-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.2
    • /
    • pp.208-219
    • /
    • 2009
  • This study is to establish a management method for conservation through comparison and analysis on vegetation structures of Pinus densiflora forest around Beopjusa area for past 17-year. The spatial range of the study was $3.6km^2$ from maintenance office to Beopjusa area. The analysis results of the actual vegetation showed that the ratio of vegetation were composed of 64.7% of Pinus densiflora forest, 3.2% of mixed forest of P. densiflora and deciduous broadleaf trees and 5.9% of deciduous broadleaf tree community out of overall area, 360ha. The type of P. densiflora forest were categorized into four communities; community having high potential of succession, community having low potential of it, the community being in the process of succession and community being in the process of natural selection. The succession tendency was in order of the community having low potential of succession(P. densiflora forest), having high potential of it(P. densiflora forest which is deciduous broadleaf trees are dominating in sub-canopy layer), being in the process of succession(P. densiflora-Prunus sargentii and P. densiflora-Quercus serrata community) and being in the process of natural selection(Q. serrata-P. densiflora and Q. aliena-P. densiflora community). In terms of vegetation management, P. densiflora forest having high potential of succession was needed to remove deciduous broadleaf trees in the sub-canopy layer and the community being in the process of succession was required to be pruning the branch in the canopy layer. Lastly, the community being in the process of natural selection was suggested to let it be in succession, since it is hard to be in the status of P. densiflora Forest.