• Title/Summary/Keyword: Forest Fuel

Search Result 199, Processing Time 0.027 seconds

Thermal Characteristics of Pellets made of Agricultural and Forest by-products (농림부산물을 이용한 펠릿의 열적 특성)

  • Kang, Y.K.;Kang, G.C.;Kim, J.K.;Kim, Y.H.;Jang, J.K.;Ryu, Y.S.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.61-65
    • /
    • 2011
  • Biomass is considered to be a major potential fuel and renewable resource for the future. In fact, there is high potential to produce the large amount of energy from biomass around the world. In this study, to obtain basic data for practical application of agricultural and forest by-products as fuel of heating system in agriculture, agricultural and forest biomass resources were surveyed, the pelletizer with capacity of $50\;kg{\cdot}h^{-1}$ was designed and manufactured and pellets were made by the pelletizer. High heating value, ash content, etc. of pellets made of agricultural and forest by-products were estimated. Straw of rice was the largest agricultural biomass in 2009 and the total amount of rice straw converted into energy of $299{\times}10^3$ TOE. And in 2009, amount of forest by-product converted into energy of $9,579{\times}10^3$ TOE. High heating values of pellets made of stem and seed of rape, stem of oat, rice straw and rice husk were 16,034, 16,026, 16,089, 15,650, $15,044\;kJ{\cdot}kg^{-1}$ respectively. High heating values of pellets made of agricultural by-products were average 83.6% compared to that of wood pellet. Average bulk density of pellets made of stem and seed of rape, stem of oat, rice straw and rice husk was $1,400\;kg{\cdot}m^{-3}$ ($1.4\;g{\cdot}cm^{-3}$). Ash contents of the pellets were 6.6, 7, 6.2, 5.5, 33% respectively. Rice husk pellet produced the largest ash content compared to other kinds of pellets.

Mid- and Long-term Forecast of Forest Biomass Energy in South Korea, and Analysis of the Alternative Effects of Fossil Fuel (한국의 산림바이오매스에너지 중장기 수요-공급전망과 화석연료 대체효과 분석)

  • Lee, Seung-Rok;Han, Hee;Chang, Yoon-Seong;Jeong, Hanseob;Lee, Soo Min;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • This study analyzed the anticipated supply-and-demand of forest biomass energy (through wood pellets) until 2050, in South Korea. Comparing the utilization rates of forest resources of five countries (United Kingdom, Germany, Finland, Japan, and S. Korea), it was found that S. Korea does not nearly utilize its forest resources for energy purposes. The total demand for wood pellets in S. Korea (based on a power generation efficiency of 38%) was predicted to be 3,629 and 4,371 thousand tons in 2034 and 2050, respectively. The anticipated total wood pellet power generation ratio to target power consumption is 1.13% (5,745 GWh), 1.17% (6,336 GWh), and 1.25% (7,631 GWh) in 2020, 2030, and 2050, respectively. Low value-added forest residues left unattended in forests are called "Unused Forest Biomass" in S. Korea. From the analysis, the total annual potential amount of raw material, sustainably collectible amount, and available amount of wood pellet in 2050 were estimated to be 6,877, 4,814, and 3,370 thousand tons, respectively. The rate of contribution to Nationally Determined Contributions was up to 0.64%. Through this study, the authors found that forest biomass energy will contribute to a carbon neutral society in the near future at the national level.

Impacts of the Substitution of Firewood for Home Use on the Forest Greening after the 1945 Liberation of Korea (해방(解放) 이후(以後) 가정용(家庭用) 연료재(燃料材)의 대체(代替)가 산림녹화(山林綠化)에 미친 영향(影響))

  • Bae, Jae-Soo;Lee, Ki-Bong
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.1
    • /
    • pp.60-72
    • /
    • 2006
  • The aim of this paper is to identify and evaluate relations for forest greening and the firewood substitution for home use after 1945 Liberation of Korea. Korea faced serious forest degradation by the early 1960s due to the enormous firewood consumption, which was about ten million cubic meters annually, for home use. If the trend of firewood consumption was maintained until 1955's, the total forest area in Korea could be thoroughly degraded within 10 years. The firewood substitution for home use had to be solved as soon as possible. For this purpose, energy sector by the Ministry of Commerce and Industry carried out the substitution policy for home using the briquettes which was the only natural resources for energy produced in Korea. Firewood was prohibited being carried in the major cities by forestry sector, the Ministry of Agriculture and Forestry, from 1958. Only 5.2% of household in the cities used the forest products consumed as a fuel in 1970 because these inter-sectoral substitution measures of firewood for home use turned out a success gradually. After the 1970s, firewood consumption for home use was naturally decreased due to rural people's explosive move to cities, who were major consumers of firewood for home use at that time. Firewood for cooking was substituted by LPG gas after 1985 and firewood for house heating was substituted by coal and oil after 1980. Finally, on the basis of the firewood substitution for home use, the forest degradation that lasted over one hundred years was put a period.

Analysis of the Relationship between Landform and Forest Fire Severity (지형과 산불피해도와의 관계 분석)

  • Lee, Byung-Doo;Won, Myoung-Soo;Jang, Kwang-Min;Lee, Myung-Bo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • Topography factors, as homeostasis variables at forest fire, affect the formation of fuel load patterns, atmospheric phenomena and forest fire behavior. Examination of the correlation between landforms and fire severity is important to decision making for fire hazard analysis and fighting strategies. In this study, fire severity was analyzed using Normalized Burn Ratio(NBR) derived from pre- and post-fire Landsat TM/+ETM images and landform were classified based on Topographic Position Index(TPI) in Samcheok(2000), Cheongyang(2002), and Yangyang(2005) forest fire regions. F-tests and Duncan's multi-range test between landform and fire severity showed that fire severities of headwater, high ridges, and upper slopes is higher than ones of local ridges, midslope ridges, and plains. Fire severity were more sensitive in coniferous forest than broadleaf forests.

  • PDF

Demands for Forest Development in Kyrgyzstan and Tajikistan and International Cooperation Strategies of Rep. of Korea (키르기스스탄과 타지키스탄의 산림분야 개발수요와 한국의 협력 전략)

  • Choi, Eunho;Lim, Soojeong;Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.3
    • /
    • pp.294-304
    • /
    • 2018
  • Since joining the OECD Development Assistance committee in 2010, the Republic of Korea has been continuously striving to promote its international standing. A new era of cooperation is about to open between Korea and Central Asia, with the $25^{th}$ anniversary of the establishment of diplomatic relationship between Korea and Central Asia, and the welcoming the $80^{th}$ anniversary of the Koryoin (Korean) immigration in 2017. Central Asia is also attracting attention with a rapidly growing economy based on the endowed resources. Therefore, Kyrgyzstan and Tajikistan, among others, were investigated in the following statuses: politics, diplomacy, economy, official development assistance and national strategies. In particular, this study suggests the South Korea's Country Partnership Strategy for Forest with the nations by analyzing the forest environment and forest policy regime, and both forest cooperation strategies: 'Ecotourism Projects using a Walnut Forest' in Kyrgyzstan and 'Projects Restoring Forest and Securing Fuel Woods of Degraded Land in Tugai' in Tajikistan.

An analysis of year-to-year change of degraded forest land in Mongolia nature reserve Mt. Bogdkhan in Ulaanbaatar (몽골 울란바토르 복드한산 자연보호지역의 산림훼손지 경년변화 분석)

  • Ganzorig, Myagmar;Lee, Joon-Woo;Kweon, Hyeong-Keun;Choi, Sung-Min;Lee, Myeong-Kyo
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.205-211
    • /
    • 2014
  • Focused on Mt. Bogdkhan nature reserve in Mongolia, this study was conducted as a fundamental research to discover a tendency and characteristics of forest damage and to draw up measures for proper plans of forest restoration through an analysis of year-to year change using satellite images. In specific, land cover mapping was conducted by using Landsat images from 1994 to 2011, and then year-to year change was analyzed to investigate the features of forest damage in Mt. Bogdkhan. The results showed that the whole area of a reservation in Mongolia in 2011 was about $416.89km^2$; among them, forest area was $167,87km^2$, accounting for about 40.3%, followed by bare patch and grassland area (58.6%) and urban dry area (1.1%). In particular, compared in 1994, the area of forest in 2011 has increased by $6.12km^2$; while bare patch and grassland area has decreased by $10.81km^2$. Primary causes of forest degradation occurred in Mt. Bogdkhan nature reserve included illegal logging for fuel, forest and grassland degradation caused by domestic animals grazing, man-made forest fire, and disaster caused by insect pest.

A Numerical Study on the Effects of the Wind Velocity and Height of Grassland on the flame Spread Rate of Forest Fires (초지화재 발생시 바람의 속도 및 초본의 높이가 화염전파에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Sung-Yong;Kim, Dong-Hyun;Ryou, Hong-Sun;Lee, Sung-Hyuk
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.252-257
    • /
    • 2008
  • With the rapid exuberant growth of the forest, the number and size of forest fires and the costs of wildland fires have increased. The flame spread rate of forest fires is depending on the environmental variables like the wind velocity, moisture of grassland, etc. If we know the effects of the environmental variables on the fire growth, it is useful for wildland fiIre suppression. But analysis of the spread rate of wildland fire for these effects have not been established. In this study, the effects of wind velocity and height of grassland fuel have been investigated using the WFDS which is developed at NIST for prediction of the spread of wildland fires. The results showed that the relation between the height of the fuel and the spread rate of the head fires is, and the spread rates related to the wind velocity are predicted 17% less than the experimental results of Australia. When the wind velocity is over 7.5m/s, the concentration of pyrolyzed gas phase fuel is getting low due to fast movement of pyrolyzed gas, the flame spread rate becomes slow.

Vulnerability of Pinus densiflora to forest fire based on ignition characteristics

  • Seo, Hyung-Soo;Choung, Yeon-Sook
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.343-349
    • /
    • 2010
  • In Korea, man-caused forest fires are known originate primarily in coniferous forests. We have hypothesized that the vulnerability of Pinus densiflora forests is principally a consequence of the ignition characteristics of the species. To assess this hypothesis, we conducted two combustion experiments using fallen leaves with a reference species, Quercus variabilis. In the first experiments, in which a cigarette was employed as a primary heat source for the initiation of a forest fire, the Pinus leaves caught fire significantly faster (1'1" at Pinus, 1'31" at Quercus, P < 0.001), and ignition proceeded normally. Quercus leaves, on the other hand, caught fire but did not ignite successfully. In the second set of experiments utilizing different moisture contents and fuel loads, the maximum flame temperature of the Pinus leaves was significantly higher ($421^{\circ}C$ at Pinus, $361^{\circ}C$ at Quercus, P < 0.001) and the combustion persisted for longer than in the Quercus leaves (8'8" at Pinus, 3'38" at Quercus, P < 0.001). The moisture contents of the leaves appeared to be a more important factor in the maximum temperature achieved, whereas the most important factor in burning time was the amount of fuel. Overall, these results support the assumption that Pinus leaves can be ignited even by low-heat sources such as cigarettes. Additionally, once ignited, Pinus leaves burn at a relatively high flame temperature and burn for a prolonged period, thus raising the possibility of frequent fire occurrences and spread into crown fires in forests of P. densiflora.

Production and Fuel Properties of Wood Chips from Logging Residues by Timber Harvesting Methods (목재수확 방법에 따른 벌채부산물 목재칩의 생산 및 연료 특성)

  • Choi, Yun-Sung;Jeong, In-Seon;Cho, Min-Jae;Mun, Ho-Seong;Oh, Jae-Heun
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.217-232
    • /
    • 2021
  • This study calculated the productivity and cost of extraction and processing of logging residues by cut-to-length (CTL) and whole-tree (WT) harvesting methods. In addition, the comparative analysis of the characteristics of wood chip fuel to examine whether it was suitable for the fuel conditions of the energy facility. In the harvesting and processing system to produce the wood chips of logging residues the system productivity and cost of the CTL harvesting system were 1.6 Gwt/SMH and 89,865 won/Gwt, respectively. The productivity and cost of the WT harvesting system were 2.9 Gwt/SMH and 72,974 won/Gwt, respectively. The WT harvesting productivity increased 1.3times while harvesting cost decreased by 18.7% compared to the CTL harvesting system. The logging residues of wood chips were not suitable for CTL wood chips based on International Organization for Standardization (ISO 17225-4:2021) and South Korea standard (NIFoS, 2020), but the quality (A2, Second class) was improved through screening operation. The WT-unscreened wood chips conformed to NIFoS standard (second class) and did not conform to ISO but were improved through screening operation (Second class). In addition to the energy facility in plant A, all wood chips except CTL-unscreened wood chips were available through drying processing. The WT-unscreened wood chips were the lowest at 99,408 won/Gwt. Plants B, C, and D had higher moisture content than plant A, so WT-unscreened wood chips without drying processing were the lowest at 57,204 won/Gwt. Therefore, the production of logging residues should improve with operation methods that improve the quality of wood chips required for applying the variable biomass and energy facility.