• Title/Summary/Keyword: Forest Fire Characteristics

Search Result 182, Processing Time 0.028 seconds

The Analysis on Forest Fire Occurrence Characteristics by Regional Area in Korea from 1990 to 2014 Year

  • Jeon, Bo Ram;Chae, Hee Mun
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.149-157
    • /
    • 2016
  • Understanding regional characteristics in forest fire occurrence is important to establish effective forest fire prevention policy in Korea. This study analyzed the characteristics of forest fires occurred in 16 administrative districts for recent 25 years (1990~2014) to examine regional characteristics in forest fire occurrence. Forest fire occurrence reflects regional characteristics depending on climatic factors as well as region's society-cultural factors. Results showed that the first cause of forest fire occurrence was carelessness by human activities throughout all administrative districts, however, the second cause depends on regional characteristics. As the results of forest fire occurrence period analyzed for 10 days, the most forest fires occurred in the southern region during January to March, while forest fires in the northern region occurred mostly during March to April. We classified forest fire occurrence patterns into three types (centralized: Gyeonggi-do, dispersal: Busan, horizontally distributed: Gyeongsangnam-do) by multi-temporal analysis for forest fire occurrence period.

Developing of Forest Fire Occurrence Probability Model by Using the Meteorological Characteristics in Korea (기상특성을 이용한 전국 산불발생확률모형 개발)

  • Lee Si Young;Han Sang Yoel;Won Myoung Soo;An Sang Hyun;Lee Myung Bo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 2004
  • This study was conducted to develop a forest fire occurrence model using meteorological characteristics for the practical purpose of forecasting forest fire danger. Forest fire in South Korea is highly influenced by humidity, wind speed, and temperature. To effectively forecast forest fire occurrence, we need to develop a forest fire danger rating model using weather factors associated with forest fire. Forest fore occurrence patterns were investigated statistically to develop a forest fire danger rating index using time series weather data sets collected from 8 meteorological observation centers. The data sets were for 5 years from 1997 through 2001. Development of the forest fire occurrence probability model used a logistic regression function with forest fire occurrence data and meteorological variables. An eight-province probability model by was developed. The meteorological variables that emerged as affective to forest fire occurrence are effective humidity, wind speed, and temperature. A forest fire occurrence danger rating index of through 10 was developed as a function of daily weather index (DWI).

Comparative analysis of forest fire danger rating on the forest characteristics of thinning area and non-thinning area on forest fire burnt area (산불피해지역에서 숲 가꾸기 실행유무가 산불에 미치는 영향)

  • Lee, Si-Young;Lee, Myung-Woog;Yeom, Chan-Ho;Kwon, Chun-Geun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.153-156
    • /
    • 2008
  • Comparative analysis of forest fire danger rating on the forest characteristics of thinning area and non-thinning area on forest fire burnt area was studied in this work. To investigate the effect of thinning slash in forest fire, Gangneung-si Wangsan-myeon, Ulgin-gun Wonnam-Myeon, Samchok-si Gagok-Myeon, in which forest fire broke out, were selected. As a result that investigated forest fire danger ratio between thinning slash and non-thinning slash, leeward scorching ratio(36%), crown damage ratio(29%), mortality of branch at the former are higher than those at the latter, leeward scorching ratio of tree, where thinning slash is around, is 10%-20% higher than that of independent tree. So I estimate that thinning slash has a some effect on the intensity of forest fire. And the result to investigate damage of forest fire according to tree species shows that leeward scorching ratio of conifer is 5% higher than that of non-conifer, and mortality of branch of the former is 19% higher than that of the latter. It is considered that forest fire may affect directly to a tree trunk if it diffuse to piled thinning tree because there was no space between thinning trees and trees. Furthermore, it was found that re-ignition had a chance to occur due to lots of piled thinning trees.

  • PDF

Characteristic Analysis of Forest Fire Burned Area using GIS (GIS를 이용한 산불피해지역 특성분석)

  • Lee, Si-Young;Kang, Yong-Seok;An, Sang-Hyun;Oh, Jeong-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The forest fire occurrences and burned area are increasing every year since 1990 in Korea, of which 65% is covered by forest. This study attempts to analyze topographic characteristics of forest fire burned area using GIS, and we also applied the statistical analysis based on the fire characteristics such as weather, forest as fuels and topography in small and large forest fire burned areas. The result of the statistical analysis shows that the size of forest fire was related to the slope length, slope degree, wind speed, forest type, and forest continuity.

  • PDF

Comparative Analysis of Forest Fire Danger Rating on the Forest Characteristics of Thinning Area and Non-thinning Area (숲 가꾸기 실행 및 미 실행지의 임분특성에 따른 산불위험성 비교분석)

  • Lee, Si-Young;Lee, Myung-Woog
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.52-58
    • /
    • 2007
  • The effect of stand-growing-stock characteristics of thinning area and non-thinning area on forest fire was studied in this work. 14 spots were selected from 3 counties such as Yangyang, Injae, and Gapyeong and on-the-spot investigations were performed to evaluate the effect of forest fire. The stand-growing-stock characteristics on the spots were analyzed through the height of tree, breast height diameter, clear length, mortality of branch, forest tree standing crop density, degree of closure, and shrub and grass cover degree. The relation between forest fire and the risk of spread of forest fire were analyzed from the analysis of the stand-growing-stock characteristics. It is considered from this work that the possibility of forest fire is decreased on the thinning area compared to the non-thinning area because of higher clearlength, lower number of tree, lower mortality of branch and higher shrub and grass cover degree.

Spatial Patterns of Forest Fires between 1991 and 2007 (1991년부터 2007년까지 산불의 공간적 특성)

  • Lee, Byung-Doo;Lee, Myung-Bo
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • For the effective management of forest fire, understanding of regional forest fire patterns is needed. In this paper, forest fire ignition and spread characteristics were analyzed based on forest fire statistics. Fire occurrences, burned area, rate of spread, and burned area per fire between 1991 and 2007 were parameterized for the cluster analysis, which results were displayed using GIS to detect spatial patterns of forest fire. Administrative districts such as cities and counties were classified into 5 clusters by fire susceptibility. Metropolitan areas had fire characteristics that were infrequent, slow rate of spread, and small burned area. However, 4 cities and counties showing fast rate of spread, and large burned area, in the eastern regions of Taeback Mountain range, were the most susceptible areas to forest fire. The next vulnerable cities and counties were located in the West and South Coast area.

The Design and Implementation of Mobile Application Solution for Forest Fire based on Drone Photography and Amazon Web Service (AWS)

  • Choi, Si-eun;Bang, Jong-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.31-37
    • /
    • 2020
  • Last year's Goseong-Sokcho forest fires have highlighted the limitations of extinguishing work for night-time forest fire and the importance of quick identification for information on the spread of forest fire. However, it is not easy to find services that take into account the characteristics of forest fires, as most existing disaster-related mobile applications and research assume various disaster situations rather than just forest fire situations. Therefore, a system that can provide information quickly is needed, taking into account the characteristics of forest fires and the limitations of extinguishing work. In this paper, we propose evacuation route guidance services that bypass areas where fire has already spread, supplement existing methods of extinguishing work, and provide general information on forest fire situations in real time, by putting drones into forest fire situations. It has been implemented to automate image analysis using the Rekognition service of Amazon Web Service (AWS), and the results of fire detection and the T Map API guide the evacuation path. It is expected that the results of this paper will allow efficient and rapid rescue and extinguishing work to be carried out, and further reduce the damage of human life caused by forest fires.

Linking Spatial Characteristics of Forest Structure and Burn Severity (산림 공간구조 특성과 산불 연소강도와의 관계에 관한 연구)

  • Lee, Sang-Woo;Lim, Joo-Hoon;Won, Myoung-Su;Lee, Joo-Mee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.5
    • /
    • pp.28-41
    • /
    • 2009
  • Because fire has significant impacts on fauna and flora in forest ecosystems, as well as socioeconomic influences to local community, it has been an important field of study for decades. One of the most common ways to reduce fire risk is to enhance fire-resilience of forest through fuel treatments including thinning and prescribed burning. Since fuel treatment can't be practiced over all forested areas, appropriate and effective strategies are needed. The present study aims to look at the relationship between spatial characteristics of forest structure measured with landscape pattern metrics and burn severity to provide guidelines for effective fuel treatments. Samchuck fire was selected for the study, and 232 grids covering the study areas were generated, and the grid size was 1km. The burn severity is measured with dNBR derived from satellite imagery, and spatial characteristics of forest structure were measured using FRAGSTATS for both landscape and class levels for each 1km grid. The results of this study strongly indicated that heterogeneity in composition and configuration of forests may significantly reduce burn severity. By enhancing heterogeneity of forests, fuel treatments for fire-resilience forest could be more effective.

Surface and Component Analysis of Deteriorated ACSR due to a Flame (화염에 열화된 강심알루미늄연선의 표면 및 성분분석)

  • Kim, Young-Dal;Shim, Jae-Myung;Park, Keun-Seok;Jeong, Yun-Mi;Kim, Jae-Kwang;Byun, Jeong-Seop;Lee, Dae-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1966-1971
    • /
    • 2011
  • Generally, the characteristics of the conductor that was affected by forest fire can be analyzed only when the forest fire is accurately modeled and its effect is identified. Few studies have been conducted with a forest fire model for transmission lines, and no results of the examination of the actual test specimens that were exposed to forest fire have been reported. As the deterioration characteristics of a forest fire are difficult to analyze in the actual field, an environment that was similar to that in the field was used in this study. Deterioration was deposited on a wire using an artificial flame experiment device, to analysis the temperature, surface and component characteristics. It seems that this analysis data in this study can be used as the basic data for the database that can be utilized to analyze wires exposed to forest fire and deterioration and to predict the ACSR wire refurnishment life.

Developing Forest Fire Occurrence Probability Model Using Meteorological Characteristics (기상자료(氣象資料)를 이용(利用)한 산불발생확률모형(發生確率模型)의 개발(開發))

  • Choi, Kwan;Han, Sang Yoel
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.15-23
    • /
    • 1996
  • Preparing the era of forest resources management requires studies on forest fire. This study attempted to develop forest fire occurrence model using meteorological characteristics for the practical purposes of forecasting forest fire danger rate. To accomplish this goal, the relationships between forest fire occurrence and meteorological characteristics are estimated. In the process, the forest fire occurrence pattern of the study region(Taegu-Kyungpook) is categorized by employing qualification IV method. The study region was divided into three areas such as, Taegu, Andong and Pohang area. The meteorological variables emerged as affective to forest fire occurrence are relative humidity, longitude of sunshine, and duration of precipitation. To estimate the probability of forest fire danger, forest fire occurrence of three areas are regressed on the time series data of affective meteorological variables using logistic and probit model. The effectiveness of the models estimated are tested and showed acceptable degree of goodness. Those models developed would be helpful to increase the efficiency of forest fire management such as detection of forest fire occurrence and effective disposition of forest fire fight equipments.

  • PDF