• Title/Summary/Keyword: Foreground region extraction

Search Result 17, Processing Time 0.029 seconds

Adaptive Extraction Method for Phase Foreground Region in Laser Interferometry of Gear

  • Xian Wang;Yichao Zhao;Chaoyang Ju;Chaoyong Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.387-397
    • /
    • 2023
  • Tooth surface shape error is an important parameter in gear accuracy evaluation. When tooth surface shape error is measured by laser interferometry, the gear interferogram is highly distorted and the gray level distribution is not uniform. Therefore, it is important for gear interferometry to extract the foreground region from the gear interference fringe image directly and accurately. This paper presents an approach for foreground extraction in gear interference images by leveraging the sinusoidal variation characteristics shown by the interference fringes. A gray level mask with an adaptive threshold is established to capture the relevant features, while a local variance evaluation function is employed to analyze the fluctuation state of the interference image and derive a repair mask. By combining these masks, the foreground region is directly extracted. Comparative evaluations using qualitative and quantitative assessment methods are performed to compare the proposed algorithm with both reference results and traditional approaches. The experimental findings reveal a remarkable degree of matching between the algorithm and the reference results. As a result, this method shows great potential for widespread application in the foreground extraction of gear interference images.

Character Region Extraction of Monumental Inscription Image Using Boundary Information (윤곽선 정보를 이용한 금석문 영상의 글자 영역 추출)

  • 최호형;박영식;김기석
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.118-121
    • /
    • 2002
  • The study on shilla monumental inscription has been accomplished by many historians. However, the research on segmentation of monumental inscription image using digital image processing is not sufficient for restoration of the image. Although, many image processing methods have been proposed for region extraction in still image, there is no suitable method for accurate interpretation of monumental inscription image. To distinguish foreground and background region in the image, this paper presents new segmentation algorithm composed of contrast adjustment and median filtering, thresholding and sobel operation, as pre-processing and post-processing. The result show that background and foreground regions are segmented in monumental inscription image.

  • PDF

A Basic Study on the Fire Flame Extraction of Non-Residential Facilities Based on Core Object Extraction (핵심 객체 추출에 기반한 비주거 시설의 화재불꽃 추출에 관한 기초 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.71-79
    • /
    • 2017
  • Recently, Fire watching and dangerous substances monitoring system has been being developed to enhance various fire related security. It is generally assumed that fire flame extraction plays a very important role on this monitoring system. In this study, we propose the fire flame extraction method of Non-Residential Facilities based on core object extraction in image. A core object is defined as a comparatively large object at center of the image. First of all, an input image and its decreased resolution image are segmented. Segmented regions are classified as the outer or the inner region. The outer region is adjacent to boundaries of the image and the rest is not. Then core object regions and core background regions are selected from the inner region and the outer region, respectively. Core object regions are the representative regions for the object and are selected by using the information about the region size and location. Each inner region is classified into foreground or background region by comparing its values of a color histogram intersection of the inner region against the core object region and the core background region. Finally, the extracted core object region is determined as fire flame object in the image. Through experiments, we find that to provide a basic measures can respond effectively and quickly to fire in non-residential facilities.

Content-based Image Retrieval by Extraction of Specific Region (특징 영역 추출을 통한 내용 기반 영상 검색)

  • 이근섭;정승도;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.77-80
    • /
    • 2001
  • In general, the informations of the inner image that user interested in are limited to a special domain. In this paper, as using Wavelet Transform for dividing image into high frequency and low frequency, We can separate foreground including many data. After calculating object boundary of separated part, We extract special features using Color Coherence Vector. According to results of this experiment, the method of comparing data extracting foreground features is more effective than comparing data extracting features of entire image when we extract the image user interested in.

  • PDF

A Study on Extraction of Central Objects in Color Images (칼라 영상에서의 중심 객체 추출에 관한 연구)

  • 김성영;박창민;권규복;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.616-624
    • /
    • 2002
  • An extraction method of central objects in the color images is proposed, in this paper. A central object is defined as a comparatively consist of the central object in the image. First of all. an input image and its decreased resolution images are segmented. Segmented regions are classified as the outer or the inner region. The outer region is adjacent regions are included by a same region in the decreased resolution image. Then core object regions and core background regions are selected from the inner region and the outer region respectively. Core object regions are the representative regions for the object and are selected by using the information about the information about the region size and location. Each inner regions is classified into foreground or background regions by comparing values of a color histogram intersection of the inner region against the core object region and the core background regions. The core object region and foreground regions consist of the central object in the image.

  • PDF

Crab Region Extraction Method from Tidal Flat Images Using Superpixels

  • Park, Sanghyun
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.29-39
    • /
    • 2019
  • Tidal Flats are very important natural resource and various efforts have been made to protect it from environmental pollutions. The projects to monitor the environmental changes by periodically observing the creatures in tidal flats are underway. However, they are being done inefficiently by people directly observing. In this paper, we propose an object segmentation method that can be applied to the applications which automatically monitor the living creatures in tidal flats. In the proposed method, a foreground map representing the location of objects is obtained by using a temporal difference method, and then a superpixel method is applied to detect the detailed boundary of an object. The region of a crab is extracted finally by combining the foreground map and the superpixel information. Experimental results show that the proposed method separates crab regions from a tidal flat image easily and accurately.

Fingerprint region and table segmentation in fingerprint document (지문원지의 영역분할 및 도표 인식)

  • 정윤주;이영화;이준재;심재창
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.552-555
    • /
    • 1999
  • In this paper, a method for extracting the fingerprint regions and the table from fingerprint document which is the size of A4 including ten fingerprints images in a table is presented. The extraction of each fingerprint region is carried out by segmenting the foreground fingerprint region using a block filtering method and detecting its center point. The table extraction, by detecting a horizontal line using line tracing, and detecting a vertical line by its orthogonal equation. Here, T-shaped mask is proposed for finding the starting points of the vertical line intersecting horizontal line by the form of 'T'. Experimental results show above 95% correct rate of extracting the fingerprint region and table.

  • PDF

Composition of Foreground and Background Images using Optical Flow and Weighted Border Blending (옵티컬 플로우와 가중치 경계 블렌딩을 이용한 전경 및 배경 이미지의 합성)

  • Gebreyohannes, Dawit;Choi, Jung-Ju
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.3
    • /
    • pp.1-8
    • /
    • 2014
  • We propose a method to compose a foreground object into a background image, where the foreground object is a part (or a region) of an image taken by a front-facing camera and the background image is a whole image taken by a back-facing camera in a smart phone at the same time. Recent high-end cell-phones have two cameras and provide users with preview video before taking photos. We extract the foreground object that is moving along with the front-facing camera using the optical flow during the preview. We compose the extracted foreground object into a background image using a simple image composition technique. For better-looking result in the composed image, we apply a border smoothing technique using a weighted-border mask to blend transparency from background to foreground. Since constructing and grouping pixel-level dense optical flow are quite slow even in high-end cell-phones, we compute a mask to extract the foreground object in low-resolution image, which reduces the computational cost greatly. Experimental result shows the effectiveness of our extraction and composition techniques, with much less computational time in extracting the foreground object and better composition quality compared with Poisson image editing technique which is widely used in image composition. The proposed method can improve limitedly the color bleeding artifacts observed in Poisson image editing using weighted-border blending.

A Novel Segment Extraction and Stereo Matching Technique using Color, Motion and Initial Depth from Depth Camera (컬러, 움직임 정보 및 깊이 카메라 초기 깊이를 이용한 분할 영역 추출 및 스테레오 정합 기법)

  • Um, Gi-Mun;Park, Ji-Min;Bang, Gun;Cheong, Won-Sik;Hur, Nam-Ho;Kim, Jin-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1147-1153
    • /
    • 2009
  • We propose a novel image segmentation and segment-based stereo matching technique using color, depth, and motion information. Proposed technique firstly splits reference images into foreground region or background region using depth information from depth camera. Then each region is segmented into small segments with color information. Moreover, extracted segments in current frame are tracked in the next frame in order to maintain depth consistency between frames. The initial depth from the depth camera is also used to set the depth search range for stereo matching. Proposed segment-based stereo matching technique was compared with conventional one without foreground and background separation and other conventional one without motion tracking of segments. Simulation results showed that the improvement of segment extraction and depth estimation consistencies by proposed technique compared to conventional ones especially at the static background region.

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.