• 제목/요약/키워드: Foreground extraction

검색결과 62건 처리시간 0.021초

Background separation approach in single image based on CLBP and color cues

  • Kim, Jaehwan;Cui, Run;Choi, Youngjin;Kim, Hyoung Joong
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 추계학술대회
    • /
    • pp.268-270
    • /
    • 2014
  • Object extraction problem is one of the most important topics in the research area of computer vision, this type of technique can be widely used in practical, such as image processing, robot vision, automatically traffic guide and so on. In this paper, we propose a different way to estimate the background and foreground without any previous training procedure, this approach can be used for automatic object extraction in the future. A simple experiment result shows that our approach has a good potential for the further more practical application.

  • PDF

Mean-Shift Blob Clustering and Tracking for Traffic Monitoring System

  • Choi, Jae-Young;Yang, Young-Kyu
    • 대한원격탐사학회지
    • /
    • 제24권3호
    • /
    • pp.235-243
    • /
    • 2008
  • Object tracking is a common vision task to detect and trace objects between consecutive frames. It is also important for a variety of applications such as surveillance, video based traffic monitoring system, and so on. An efficient moving vehicle clustering and tracking algorithm suitable for traffic monitoring system is proposed in this paper. First, automatic background extraction method is used to get a reliable background as a reference. The moving blob(object) is then separated from the background by mean shift method. Second, the scale invariant feature based method extracts the salient features from the clustered foreground blob. It is robust to change the illumination, scale, and affine shape. The simulation results on various road situations demonstrate good performance achieved by proposed method.

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.

가상스튜디오에서 실사 TV 카메라의 3-D 기준 좌표와 추적 영상을 이용한 카메라 파라메타 추출 방법 (Camera Parameter Extraction Method for Virtual Studio Applications by Tracking the Location of TV Camera)

  • 한기태;김회율
    • 방송공학회논문지
    • /
    • 제4권2호
    • /
    • pp.176-186
    • /
    • 1999
  • 가상스튜디오에서 보다 현실감 있는 영상을 제작하기 위해서는 전경화면의 객체와 컴퓨터그래픽으로 지원하는 가상 배경화면간의 동기화를 정확히 실현하는 것이 중요하다. 본 논문은 TV 카메라(실사 카메라)에 대한 추적 영상좌표를 이용하여 동기화에 필요한 카메라 파라메타의 추출방법을 제안한다. 추적 영상에 대한 역투시 방정식과 실사 카메라에 대한 기존좌표와 추정좌표간의 3-D 변환 식으로부터 카메라 파라메타 추출 식을 유도하고, 유도된 식을 이용하여 추출한 파라메타와 실사 카메라에 적용한 파라메타 간의 일치정도를 비교하여 제안한 방법에 대한 타당성을 보인다.

  • PDF

중국 자동차 번호판 인식 (Recognition of Chinese Automobile License Plates)

  • 안영준;위규범;홍만표
    • 정보처리학회논문지B
    • /
    • 제14B권2호
    • /
    • pp.81-88
    • /
    • 2007
  • 도난차량 추적과 주차 관리 시스템 및 과속 차량 탐지 등에 광범위하게 사용되는 차량 번호판 인식 시스템을 구현하였다. 인식 시스템은 번호판을 추출하는 부분과 추출된 번호판을 인식하는 단계로 나뉘어진다. 번호판 추출 단계에서는 영상의 기울기를 측정하기 위해 수평 성분만을 추출하는 필터를 사용하여 차창과 번호판을 포함한 차량 전면부의 수평 성분만을 검출한 후 이것의 기울기를 측정하는 방법으로 번호판의 기울기를 구한다. 세그먼트 추출 과정에서는 신경화소 또는 배경화소가 연속하여 나타나는 블록의 계수의 변화를 감지하여 각 문자 또는 숫자를 추출한다. 각 문자 또는 숫자의 인식 단계에서는 잡음의 영향을 덜 받으며 높은 정확도를 보이는 비교템플렛 방법을 제안한다. 기존의 원형정합 방법과 히스토그램 방법과의 비교 실험을 통하여 제안한 방법의 인식 성능이 우수함을 보인다.

순천만 갯벌 영상에서 게 영역 추출 방법 (Crab Region Extraction Method from Suncheon Bay Tidal Flat Images)

  • 박상현
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1197-1206
    • /
    • 2019
  • 순천만은 매우 중요한 자연자원으로 환경오염으로부터 이를 보호하기 위한 노력들이 이루어지고 있다. 순천만 갯벌에 서식하는 생물들을 주기적으로 관찰하여 환경의 변화를 모니터링하는 사업이 진행되고 있으나 사람이 직접 관찰하는 비효율적인 방법으로 이루어지고 있다. 본 논문에서는 갯벌에 서식하는 생물들을 자동으로 모니터링하기 위한 방법에 적용될 수 있는 객체 분할 방법을 제안한다. 제안하는 방법에서는 차 영상을 이용하여 객체의 위치 정보를 나타내는 전경 맵을 구하고, 영상의 세밀한 경계 검출을 위해 슈퍼픽셀 방법을 적용한다. 전경 맵과 슈퍼픽셀 정보를 이용하여 최종적으로 갯벌 영상에서 게의 영역을 추출한다. 실험 결과는 제안하는 방법이 간단하면서도 정확하게 갯벌 영상에서 게 영역을 분리하는 것을 보여준다.

다빈치 프로세서 기반 스마트 카메라에서의 객체 추적 알고리즘의 최적 구현 (An Optimal Implementation of Object Tracking Algorithm for DaVinci Processor-based Smart Camera)

  • 이병은;;정선태
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.17-22
    • /
    • 2009
  • 다빈치 프로세서는 임베디드 멀티미디어 응용 구현 프로세서로 많이 사용된다. ARM 9 코어 및 DSP 코어의 듀얼 코어로 되어 있어 ARM 코어 에서는 주변 장치 제어, 비디오 입출력 제어, 네트워킹 등을 지원하며, DSP 코어는 보다 효율적인 디지털 신호 처리 연산을 지원한다. 본 논문에서는 본 저자들의 연구실에서 만들고 있는 다빈치 프로세서 기반의 스마트 카메라에 있어서 객체 추적 알고리즘의 최적 구현 방안 노력을 기술한다. 본 논문의 스마트 카메라는 입력 영상에서 관심 객체를 검출하고 이를 추적하며, 분류하고 감시구역에 침입한 경우 이를 IP 프로토콜로 원격 클라이언트에게 통보하는 기능을 보유한다. 객체 추적은 전방 마스크 추출, 전방 마스크 교정, 연결 요소 레이블링, 블롭 지역 계산 등 계산량이 많은 절차들로 구성되어 효율적으로 구현되지 않으면 실시간 처리가 힘들다.

  • PDF

어안 렌즈 카메라 영상을 이용한 기절동작 인식 (Development of a Fall Detection System Using Fish-eye Lens Camera)

  • 소인미;한대경;강선경;김영운;정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.97-103
    • /
    • 2008
  • 이 논문은 응급상황을 인식하기 위하여 어안렌즈를 통해 획득된 영상을 이용하여 기절 동작을 인식하는 방법을 제안한다. 거실의 천장 중앙에 위치한 어안렌즈(fish-eye lens)를 장착한 카메라로부터 영상을 입력 받은 뒤, 가우시안 혼합 모델 기반의 적응적 배경 모델링 방법을 이용하여 전경 픽셀을 추출한다. 그리고 연결되어 있는 전경픽셀 영역들의 외곽점들을 추적하여 타원으로 매핑한다. 이 타원을 추적하면서 어안 렌즈 영상을 투시 영상으로 변환한 다음 타원의 크기 변화, 위치 변화, 이동 속도정보를 추출하여 이동과 정지 및 움직임이 기절동작과 유사한지를 판단한다. 실험 결과 어안 렌즈 영상을 그대로 사용하는 것보다 투시 영상으로 변환하여 타원의 크기변화, 위치변화, 이동속도 정보를 추출하는 방법이 보다 높은 인식률을 보였다.

  • PDF

Illumination-Robust Foreground Extraction for Text Area Detection in Outdoor Environment

  • Lee, Jun;Park, Jeong-Sik;Hong, Chung-Pyo;Seo, Yong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.345-359
    • /
    • 2017
  • Optical Character Recognition (OCR) that has been a main research topic of computer vision and artificial intelligence now extend its applications to detection of text area from video or image contents taken by camera devices and retrieval of text information from the area. This paper aims to implement a binarization algorithm that removes user intervention and provides robust performance to outdoor lights by using TopHat algorithm and channel transformation technique. In this study, we particularly concentrate on text information of outdoor signboards and validate our proposed technique using those data.

딥러닝기반 YOLO를 활용한 후숙과일 분류 및 숙성 예측 시스템 (Deep Learning-based Mango Classification and Prediction System of Fruit Ripening using YOLO)

  • 김영민;박승민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.187-188
    • /
    • 2021
  • 본 논문에서는 실시간으로 web-cam을 이용해, 후숙과일의 불량 여부를 판단, 분류하고 불량이 없는 후숙과일의 이미지 분석을 통하여 숙성도 예측하는 시스템을 소개한다. 실시간 다중 객체인식에 탁월한 yolo모델을 활용해, 과일의 불량여부 판단 후 분류하고, 이미지를 획득한 뒤, k-mean clustering 알고리즘을 이용해, 이미지를 segmentation 한다. segmentation된 이미지에 grabcut 알고리즘의 foreground-extraction을 사용해 배경 제거를 한 뒤, cluster의 중심색상값 색상값의 면적%, 전체 면적을 이용해 현재 숙성도를 계산하고 이를 이용해 과일의 후숙 시간 데이터와 비교, 숙성이 완료될 시간을 예측한다. 기존 수작업으로 이루어지고 있는 과일의 분류작업의 인력 감소 및 정확성을 높일 수 있는 알고리즘을 제안한다.

  • PDF