• Title/Summary/Keyword: Foreground Image

Search Result 209, Processing Time 0.025 seconds

Multiple TIP Images Blending for Wide Virtual Environment (넓은 가상환경 구축을 위한 다수의 TIP (Tour into the Picture) 영상 합성)

  • Roh, Chang-Hyun;Lee, Wan-Bok;Ryu, Dae-Hyun;Kang, Jung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.61-68
    • /
    • 2005
  • Image-based rendering is an approach to generate realistic images in real-time without modeling explicit 3D geometry. Especially, owing to its simplicity, TIP(Tour Into the Picture) is preferred to constructing a 3D background scene. Because existing TIP methods have a limitation in that they lack geometrical information, we can not expect a accurate scene if the viewpoint is far from the origin of the TIP. In this paper, we propose the method of constructing a virtual environment of a wide area by blending multiple TIP images. Firstly, we construct multiple TIP models of the virtual environment. Then we interpolate foreground and background objects respectively, to generate a smooth navigation image. The method proposed here can be applied to various industry applications, such as computer game, 3D car navigation, and so on.

Object Image Classification Using Hierarchical Neural Network (계층적 신경망을 이용한 객체 영상 분류)

  • Kim Jong-Ho;Kim Sang-Kyoon;Shin Bum-Joo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2006
  • In this paper, we propose a hierarchical classifier of object images using neural networks for content-based image classification. The images for classification are object images that can be divided into foreground and background. In the preprocessing step, we extract the object region and shape-based texture features extracted from wavelet transformed images. We group the image classes into clusters which have similar texture features using Principal Component Analysis(PCA) and K-means. The hierarchical classifier has five layes which combine the clusters. The hierarchical classifier consists of 59 neural network classifiers learned with the back propagation algorithm. Among the various texture features, the diagonal moment was the most effective. A test with 1000 training data and 1000 test data composed of 10 images from each of 100 classes shows classification rates of 81.5% and 75.1% correct, respectively.

  • PDF

An Extended TIP Technique for Android Platform (Android Platform에서의 확장된 TIP 기술)

  • Kim, Young-Ja;Lee, Yon-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • TIP technology enables navigation of the internal contents of images by extracting geometry information from two-dimensional drawing or a picture and generating three-dimensional effects from extracted information. The technology can be applied to a variety of practical fields including game, entertainment, education, public relations and so on. This paper proposes extended application of TIP technology and realization method for smart devices using OpenGL ES Library for Android platform. Considering problems associated with a foreground object extraction, the proposed method uses vanishing points chosen by the user to facilitate more realistic scene configuration. Then, method acquires three-dimensional background model using OpenGL ES Library, develops three-dimensional virtual space and enables image navigation via camera viewpoint conversion. The experimental image is made on Android 2.1 and OpenGL ES 1.0 using the image taken on devices built on the Android platform. Thus, the proposed technology can be implemented to various smart devices built on the Android platform at lower cost and in less time.

An Efficient Walkthrough from Two Images using Spidery Mesh Interface and View Morphing (Spidery 매쉬 인터페이스와 뷰 모핑을 이용한 두 이미지로부터의 효율적인 3차원 애니메이션)

  • Cho, Hang-Shin;Kim, Chang-Hun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.2
    • /
    • pp.132-140
    • /
    • 2001
  • This paper proposes an efficient walktlu-ough animation from two images of the same scene. To make animation easily and fast, Tour Into the Picture(TIP) enables walkthrough animation from single image but lacks the reality of its foreground object when the viewpoint moves from side to side, and view morphing uses only 2D transition between two images but restricts its camera path on the line between two views. By combining advantages of these two image-based techniques, this paper suggests a new virtual navigation technique which enable natural scene transformation when the viewpoint changes in the side-to-side direction as well as in the depth direction. In our method, view morphing is employed only in foreground objects , and background scene which is perceived carelessly is mapped into cube-like 3D model as in TIP, so as to save laborious 3D reconstruction costs and improve visual realism simultaneously. To do this, we newly define a camera transformation between two images from the relationship of the spidery mesh transformation and its corresponding 3D view change. The result animation shows that our method creates a realistic 3D virtual navigation using a simple interface.

  • PDF

Medical Image Automatic Annotation Using Multi-class SVM and Annotation Code Array (다중 클래스 SVM과 주석 코드 배열을 이용한 의료 영상 자동 주석 생성)

  • Park, Ki-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.281-288
    • /
    • 2009
  • This paper proposes a novel algorithm for the efficient classification and annotation of medical images, especially X-ray images. Since X-ray images have a bright foreground against a dark background, we need to extract the different visual descriptors compare with general nature images. In this paper, a Color Structure Descriptor (CSD) based on Harris Corner Detector is only extracted from salient points, and an Edge Histogram Descriptor (EHD) used for a textual feature of image. These two feature vectors are then applied to a multi-class Support Vector Machine (SVM), respectively, to classify images into one of 20 categories. Finally, an image has the Annotation Code Array based on the pre-defined hierarchical relations of categories and priority code order, which is given the several optimal keywords by the Annotation Code Array. Our experiments show that our annotation results have better annotation performance when compared to other method.

Research on Infrastructure technology of Stereoscopic Object Expression Utilizing the Grabcut algorithm (Grabcut 알고리즘을 활용한 Stereoscopic 객체표현 기반 기술 연구)

  • Lee, Min ho;Choi, Jin yeong;Lee, Jong hyeok;Cha, Jae sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.151-159
    • /
    • 2018
  • Recently, stereoscopic technology has become a potential for blue ocean as a new growth power industry, and interest in it has been steadily increasing with the development of virtual and augmented reality technologies. Various methods such as binocular parallax and polarized glasses have been developed and used for stereoscopic image expression, but they have limitations such as eye damage, headache, crosstalk and resolution degradation. In this paper, we present a new method of stereoscopic image representation that can overcome the limitations and verify its applicability through basic experiments for object extraction and real - time image representation.

Efficient Signal Filling Method Using Watershed Algorithm for MRC-based Image Compression (MRC 기반의 영상 부호화를 위한 분수령 알고리즘을 이용한 효과적인 신호 채움 기법)

  • Park, Sang-Hyo;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.21-30
    • /
    • 2015
  • Image coding based on mixed raster content model generates don't care regions (DCR) in foreground and background layers, and its overall coding performance is greatly affected by region filling methods for DCRs. Most conventional methods for DCR filling fail in utilizing the local signal properties in hole regions and thus the high frequency components in non-DCR regions are reflected into DCR after signal filling. In addition, further high frequency components are induced to the filled signal because of signal discontinuities in the boundary of DCR. To solve this problem, a new DCR filling algorithm using the priority-based adaptive region growing is proposed in this paper. The proposed method uses the watershed algorithm and the flooding priority of each pixel for region filling is determined from the degree of smoothness in the neighborhood area. By growing the filled region into DCR based on the computed priority, the expansion of high-textured area can be minimized which can improve the overall coding performance. Experimental results show that the proposed method outperforms conventional algorithms.

Real-time Eye Contact System Using a Kinect Depth Camera for Realistic Telepresence (Kinect 깊이 카메라를 이용한 실감 원격 영상회의의 시선 맞춤 시스템)

  • Lee, Sang-Beom;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.277-282
    • /
    • 2012
  • In this paper, we present a real-time eye contact system for realistic telepresence using a Kinect depth camera. In order to generate the eye contact image, we capture a pair of color and depth video. Then, the foreground single user is separated from the background. Since the raw depth data includes several types of noises, we perform a joint bilateral filtering method. We apply the discontinuity-adaptive depth filter to the filtered depth map to reduce the disocclusion area. From the color image and the preprocessed depth map, we construct a user mesh model at the virtual viewpoint. The entire system is implemented through GPU-based parallel programming for real-time processing. Experimental results have shown that the proposed eye contact system is efficient in realizing eye contact, providing the realistic telepresence.

A Watermarking for Text Document Images using Edge Direction Histograms (에지 방향 히스토그램을 이용한 텍스트 문서 영상의 워터마킹)

  • 김영원;오일석
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.203-212
    • /
    • 2004
  • The watermarking is a method to achieve the copyright protection of multimedia contents. Among several media, the left documents show very peculiar properties: block/line/word patterning, clear separation between foreground and background areas. So algorithms specific to the text documents are required that meet those properties. This paper proposes a novel watermarking algorithm for the grayscale text document images. The algorithm inserts the watermark signals through the edge direction histograms. A concept of sub-image consistency is developed that the sub-images have similar shapes in terms of edge direction histograms. Using Korean, Chinese, and English document images, the concept is evaluated and proven to be valid over a wide range of document images. To insert watermark signals, the edge direction histogram is modified slightly. The experiments were performed on various document images and the algorithm was evaluated in terms of imperceptibility and robustness.

Optimal Design Space Exploration of Multi-core Architecture for Real-time Lane Detection Algorithm (실시간 차선인식 알고리즘을 위한 최적의 멀티코어 아키텍처 디자인 공간 탐색)

  • Jeong, Inkyu;Kim, Jongmyon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • This paper proposes a four-stage algorithm for detecting lanes on a driving car. In the first stage, it extracts region of interests in an image. In the second stage, it employs a median filter to remove noise. In the third stage, a binary algorithm is used to classify two classes of backgrond and foreground of an input image. Finally, an image erosion algorithm is utilized to obtain clear lanes by removing noises and edges remained after the binary process. However, the proposed lane detection algorithm requires high computational time. To address this issue, this paper presents a parallel implementation of a real-time line detection algorithm on a multi-core architecture. In addition, we implement and simulate 8 different processing element (PE) architectures to select an optimal PE architecture for the target application. Experimental results indicate that 40×40 PE architecture show the best performance, energy efficiency and area efficiency.