• Title/Summary/Keyword: Forecasting team

Search Result 67, Processing Time 0.025 seconds

Establishment of Pest Forecasting Management System for the Improvement of Pass Ratio of Korean Exporting Pears

  • Park, Joong Won;Park, Jeong Sun;Kang, Ah Rang;Na, In Seop;Cha, Gwang Hong;Oh, Hwan Jung;Lee, Sang Hyun;Yang, Kwang Yeol;Kim, Wol Soo;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.2
    • /
    • pp.163-169
    • /
    • 2012
  • A decrease in pass ratio of Korean exporting pears causes several negative effects including an increase in pesticide dependency. In this study, we attempted to establish the pest forecasting management system, composed of weekly field forecasting by pear farmers, meteorological data obtained by automatic weather station (AWS), newly designed internet web page ($\underline{http://pearpest.jnu.ac.kr/}$) as information collecting and providing ground, and information providing service. The weekly field forecasting information on major pear diseases and pests was collected from the forecasting team composed of five team leaders from each pear exporting complex. Further, an abridged weather information for the prediction of an infestation of major disease (pear scab) and pest (pear psylla and scale species) was obtained from an AWS installed at Bonghwang in Naju City. Such information was then promptly uploaded on the web page and also publicized to the pear famers specializing in export. We hope this pest forecasting management system increases the pass ratio of Korean exporting pears throughout establishment of famer-oriented forecasting, inspiring famers' effort for the prevention and forecasting of diseases and pests occurring at pear orchards.

Development and Verification of a Rapid Refresh Wave Forecasting System (초단기 파랑예측시스템 구축 및 예측성능 검증)

  • Roh, Min;La, NaRy;Oh, SangMyeong;Kang, KiRyong;Chang, PilHun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.340-350
    • /
    • 2020
  • A rapid refresh wave forecasting system has been developed using the sea wind on the Korea Local Analysis and Prediction System. We carried out a numerical experiment for wind-wave interaction as an important parameter in determining the forecasting performance. The simulation results based on the seasons of with typhoon and without typhoon has been compared with the observation of the ocean data buoy to verify the forecasting performance. In case of without typhoon, there was an underestimate of overall forecasting tendency, and it confirmed that an increase in the wind-wave interaction parameter leads to a decrease in the underestimate tendency and root mean square error (RMSE). As a result of typhoon season by applying the experiment condition with minimum RMSE on without typhoon, the forecasting error has increased in comparison with the result without typhoon season. It means that the wave model has considered the influence of the wind forcing on a relatively weak period on without typhoon, therefore, it might be that the wave model has not sufficiently reflected the nonlinear effect and the wave energy dissipation due to the strong wind forcing.

Weekly Maximum Electric Load Forecasting Method for 104 Weeks Using Multiple Regression Models (다중회귀모형을 이용한 104주 주 최대 전력수요예측)

  • Jung, Hyun-Woo;Kim, Si-Yeon;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1186-1191
    • /
    • 2014
  • Weekly and monthly electric load forecasting are essential for the generator maintenance plan and the systematic operation of the electric power reserve. This paper proposes the weekly maximum electric load forecasting model for 104 weeks with the multiple regression model. Input variables of the multiple regression model are temperatures and GDP that are highly correlated with electric loads. The weekly variable is added as input variable to improve the accuracy of electric load forecasting. Test results show that the proposed algorithm improves the accuracy of electric load forecasting over the seasonal autoregressive integrated moving average model. We expect that the proposed algorithm can contribute to the systematic operation of the power system by improving the accuracy of the electric load forecasting.

Predicting the Performance of Forecasting Strategies for Naval Spare Parts Demand: A Machine Learning Approach

  • Moon, Seongmin
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.

Monthly Hanwoo supply and forecasting models

  • Hyungwoo, Lee;Seonu, Ji;Tongjoo, Suh
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.797-806
    • /
    • 2021
  • As the number of scaled-up ranches increased and agile responses to market changes became possible, decision-making by Hanwoo cattle farms also began to affect short-term shipments. Considering the changing environment of the Hanwoo supply market and the response speed of producers, it is necessary quickly to grasp the forecast ahead of time and to respond accordingly in an effort to stabilize supply and demand in the Hanwoo market. In this study, short-term forecasting model centered on the supply of Hanwoo was established. The analysis conducted here indicates that the slaughter of Hanwoo males increases by 0.248 as the number of beef cattle raised over 29 months of age in the previous month increases by one, and 0.764 Hanwoo females were slaughtered under average conditions for every Hanwoo male slaughtered. With regard to time, the slaughtering of Hanwoo was higher in January and August, which are months known for holiday food preparation activities for the New Year and Chuseok in Korea, respectively. Simulations indicated that errors were within 10% in all simulations performed through the Hanwoo supply model. Accordingly, it is considered that the estimation results from the supply model devised in this study are reliable and that the model has good structural stability.

Demand Forecasting by the Mobile RFID Service Model (모바일 RFID 서비스 모델에 따른 수요예측)

  • Park, Yong-Jae;Lim, Kwang-Sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.495-498
    • /
    • 2007
  • Recently, as REID Tag and Reader has been attached to, and wireless internet has been added to a mobile phone, the commercialization of Mobile RFID Service to obtain necessary information on daily life and use various applications by using mobile communication infra is drawing nearer. A new returns by Mobile RFID Service can be expected, however, the exact demand forecasting for the Mobile RFID Service is essential to induce mass investment from related communication enterprises. This study tries to get a foothold in enlarging the investment from related communication enterprises through demand forecasting for the Mobile RFID Service and to be helpful to the decision on their investment by predicting the demand on the service various Mobile RFID Service Models.

  • PDF

On Parameter Estimation of Growth Curves for Technological Forecasting by Using Non-linear Least Squares

  • Ko, Young-Hyun;Hong, Seung-Pyo;Jun, Chi-Hyuck
    • Management Science and Financial Engineering
    • /
    • v.14 no.2
    • /
    • pp.89-104
    • /
    • 2008
  • Growth curves including Bass, Logistic and Gompertz functions are widely used in forecasting the market demand. Nonlinear least square method is often adopted for estimating the model parameters but it is difficult to set up the starting value for each parameter. If a wrong starting point is selected, the result may lead to erroneous forecasts. This paper proposes a method of selecting starting values for model parameters in estimating some growth curves by nonlinear least square method through grid search and transformation into linear regression model. Resealing the market data using the national economic index makes it possible to figure out the range of parameters and to utilize the grid search method. Application to some real data is also included, where the performance of our method is demonstrated.

Demand Forecasting Model for Bike Relocation of Sharing Stations (공유자전거 따릉이 재배치를 위한 실시간 수요예측 모델 연구)

  • Yoosin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.107-120
    • /
    • 2023
  • The public bicycle of Seoul, Ttareungyi, was launched at October 2015 to reduce traffic and carbon emissions in downtown Seoul and now, 2023 Oct, the cumulative number of user is upto 4 million and the number of bike is about 43,000 with about 2700 stations. However, super growth of Ttareungyi has caused the several problems, especially demand/supply mismatch, and thus the Seoul citizen has been complained about out of stock. In this point, this study conducted a real time demand forecasting model to prevent stock out bike at stations. To develop the model, the research team gathered the rental·return transaction data of 20,000 bikes in whole 1600 stations for 2019 year and then analyzed bike usage, user behavior, bike stations, and so on. The forecasting model using machine learning is developed to predict the amount of rental/return on each bike station every hour through daily learning with the recent 90 days data with the weather information. The model is validated with MAE and RMSE of bike stations, and tested as a prototype service on the Seoul Bike Management System(Mobile App) for the relocation team of Seoul City.

Logistic Regression for Investigating Credit Card Default

  • Yang, Jeong-Won;Ha, Sung-Ho;Min, Ji-Hong
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.164-169
    • /
    • 2008
  • The increasing late-payment rate of credit card customers caused by a recent economic downturn are incurring not only reduced profit of department stores but also significant loss. Under this pressure, the objective of credit forecasting is extended from presumption of good or bad customers to contribution to revenue growth. As a method of managing defaults of department store credit card, this study classifies credit delinquents into some clusters, analyzes repaying patterns of customers in each cluster, and develops credit forecasting system to manage delinquents of department store credit card using data of Korean D department store's delinquents. The model presented by this study uses Kohonen network, a kind of artificial neural network of data mining techniques to cluster credit delinquents into groups. Logistic regression model is also used to predict repayment rate of customers of each cluster per period. The accuracy of presented system for the whole clusters is 92.3%.

  • PDF

A patent application filing forecasting method based on the bidirectional LSTM (양방향 LSTM기반 시계열 특허 동향 예측 연구)

  • Seungwan, Choi;Kwangsoo, Kim;Sooyeong, Kwak
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.545-552
    • /
    • 2022
  • The number of patent application filing for a specific technology has a good relation with the technology's life cycle and future industry development on that area. So industry and governments are highly interested in forecasting the number of patent application filing in order to take appropriate preparations in advance. In this paper, a new method based on the bidirectional long short-term memory(LSTM), a kind of recurrent neural network(RNN), is proposed to improve the forecasting accuracy compared to related methods. Compared with the Bass model which is one of conventional diffusion modeling methods, the proposed method shows the 16% higher performance with the Korean patent filing data on the five selected technology areas.