• Title/Summary/Keyword: Forecasting error

Search Result 536, Processing Time 0.024 seconds

Forecasting Probability of Precipitation Using Morkov Logistic Regression Model

  • Park, Jeong-Soo;Kim, Yun-Seon
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • A three-state Markov logistic regression model is suggested to forecast the probability of tomorrow's precipitation based on the current meteorological situation. The suggested model turns out to be better than Markov regression model in the sense of the mean squared error of forecasting for the rainfall data of Seoul area.

Daily peak load forecasting considering the load trend and temperature (수요경향과 온도를 고려한 1일 최대전력 수요예측)

  • 최낙훈;손광명;이태기
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.35-42
    • /
    • 2001
  • Since daily peak load forecasted data are essential to economic operation and power monitor, the technique of accurate forecasting is needled. The chief advantage of forecasting technique using neural network and fuzzy theory is high accuracy and operative implicity but the loaming time is long, and it makes large forecasting error when the load changes rapidly. This paper has resented a new forecasting technique to improve those faults and the forecasting technique prove to be valid by forcasted results.

  • PDF

A Study on Centralized Wind Power Forecasting Based on Time Series Models (시계열 모형을 이용한 단기 풍력 단지 출력 지역 통합 예측에 관한 연구)

  • Wi, Young-Min;Lee, Jaehee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.918-922
    • /
    • 2016
  • As the number of wind farms operating has increased, the interest of the central unit commitment and dispatch for wind power has increased as well. Wind power forecast is necessary for effective power system management and operation with high wind power penetrations. This paper presents the centralized wind power forecasting method, which is a forecast to combine all wind farms in the area into one, using time series models. Also, this paper proposes a prediction model modified with wind forecast error compensation. To demonstrate the improvement of wind power forecasting accuracy, the proposed method is compared with persistence model and new reference model which are commonly used as reference in wind power forecasting using Jeju Island data. The results of case studies are presented to show the effectiveness of the proposed wind power forecasting method.

The Optimal Combination of Neural Networks for Next Day Electric Peak Load Forecasting

  • Konishi, Hiroyasu;Izumida, Masanori;Murakami, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1037-1040
    • /
    • 2000
  • We introduce the forecasting method for a next day electric peak load that uses the optimal combination of two types of neural networks. First network uses learning data that are past 10days of the target day. We name the neural network Short Term Neural Network (STNN). Second network uses those of last year. We name the neural network Long Term Neural Network (LTNN). Then we get the forecasting results that are the linear combination of the forecasting results by STNN and the forecasting results by LTNN. We name the method Combination Forecasting Method (CFM). Then we discuss the optimal combination of STNN and LTNN. Using CFM of the optimal combination of STNN and LTNN, we can reduce the forecasting error.

  • PDF

Very Short-term Electric Load Forecasting for Real-time Power System Operation

  • Jung, Hyun-Woo;Song, Kyung-Bin;Park, Jeong-Do;Park, Rae-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1419-1424
    • /
    • 2018
  • Very short-term electric load forecasting is essential for real-time power system operation. In this paper, a very short-term electric load forecasting technique applying the Kalman filter algorithm is proposed. In order to apply the Kalman filter algorithm to electric load forecasting, an electrical load forecasting algorithm is defined as an observation model and a state space model in a time domain. In addition, in order to precisely reflect the noise characteristics of the Kalman filter algorithm, the optimal error covariance matrixes Q and R are selected from several experiments. The proposed algorithm is expected to contribute to stable real-time power system operation by providing a precise electric load forecasting result in the next six hours.

Forecasting Housing Demand with Big Data

  • Kim, Han Been;Kim, Seong Do;Song, Su Jin;Shin, Do Hyoung
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.44-48
    • /
    • 2015
  • Housing price is a key indicator of housing demand. Actual Transaction Price Index of Apartment (ATPIA) released by Korea Appraisal Board is useful to understand the current level of housing price, but it does not forecast future prices. Big data such as the frequency of internet search queries is more accessible and faster than ever. Forecasting future housing demand through big data will be very helpful in housing market. The objective of this study is to develop a forecasting model of ATPIA as a part of forecasting housing demand. For forecasting, a concept of time shift was applied in the model. As a result, the forecasting model with the time shift of 5 months shows the highest coefficient of determination, thus selected as the optimal model. The mean error rate is 2.95% which is a quite promising result.

  • PDF

Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable (기상 변수를 고려한 모델에 의한 단기 최대전력수요예측)

  • 고희석;이충식;최종규;지봉호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.73-78
    • /
    • 2001
  • BP neural network model and multiple-regression model were composed for forecasting the special-days load. Special-days load was forecasted using that neural network model made use of pattern conversion ratio and multiple-regression made use of weekday-change ratio. This methods identified the suitable as that special-days load of short and long term was forecasted with the weekly average percentage error of 1∼2[%] in the weekly peak load forecasting model using pattern conversion ratio. But this methods were hard with special-days load forecasting of summertime. therefore it was forecasted with the multiple-regression models. This models were used to the weekday-change ratio, and the temperature-humidity and discomfort-index as explanatory variable. This methods identified the suitable as that compared forecasting result of weekday load with forecasting result of special-days load because months average percentage error was alike. And, the fit of the presented forecast models using statistical tests had been proved. Big difficult problem of peak load forecasting had been solved that because identified the fit of the methods of special-days load forecasting in the paper presented.

  • PDF

A Study on the Construction of Historical Profiles for Freeway Travel Time Forecasting (고속도로 통행시간 예측을 위한 과거 통행시간 이력자료 구축에 관한 연구(지점 검지기를 중심으로))

  • Kim, Dong-Ho;Rho, Jeong-Hyun;Park, Dong-Joo;Park, Jee-Hyung;Kim, Han-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.131-141
    • /
    • 2008
  • The objective of this study is to propose methods for determining optimal representative value and the optimal size of historical data for reliable travel time forecasting. We selected values with the smallest mean of forecasting errors as the optimal representative value of travel time pattern data. The optimal size of historical data used was determined using the CVMSE(Cross Validated Mean Square Error) method. According to the results of applying the methods to point vehicle detection data of Korea Highway Corporation, the optimal representative value were analyzed to be median. Second, it was analyzed that 60 days' data is the optimal size of historical data usedfor travel time forecasting.

Advanced Forecasting Approach to Improve Uncertainty of Solar Irradiance Associated with Aerosol Direct Effects

  • Kim, Dong Hyeok;Yoo, Jung Woo;Lee, Hwa Woon;Park, Soon Young;Kim, Hyun Goo
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1167-1180
    • /
    • 2017
  • Numerical Weather Prediction (NWP) models such as the Weather Research and Forecasting (WRF) model are essential for forecasting one-day-ahead solar irradiance. In order to evaluate the performance of the WRF in forecasting solar irradiance over the Korean Peninsula, we compared WRF prediction data from 2008 to 2010 corresponding to weather observation data (OBS) from the Korean Meteorological Administration (KMA). The WRF model showed poor performance at polluted regions such as Seoul and Suwon where the relative Root Mean Square Error (rRMSE) is over 30%. Predictions by the WRF model alone had a large amount of potential error because of the lack of actual aerosol radiative feedbacks. For the purpose of reducing this error induced by atmospheric particles, i.e., aerosols, the WRF model was coupled with the Community Multiscale Air Quality (CMAQ) model. The coupled system makes it possible to estimate the radiative feedbacks of aerosols on the solar irradiance. As a result, the solar irradiance estimated by the coupled system showed a strong dependence on both the aerosol spatial distributions and the associated optical properties. In the NF (No Feedback) case, which refers to the WRF-only stimulated system without aerosol feedbacks, the GHI was overestimated by $50-200W\;m^{-2}$ compared with OBS derived values at each site. In the YF (Yes Feedback) case, in contrast, which refers to the WRF-CMAQ two-way coupled system, the rRMSE was significantly improved by 3.1-3.7% at Suwon and Seoul where the Particulate Matter (PM) concentrations, specifically, those related to the $PM_{10}$ size fraction, were over $100{\mu}g\;m^{-3}$. Thus, the coupled system showed promise for acquiring more accurate solar irradiance forecasts.

Investigating Optimal Aggregation Interval Size of Loop Detector Data for Travel Time Estimation and Predicition (통행시간 추정 및 예측을 위한 루프검지기 자료의 최적 집계간격 결정)

  • Yoo, So-Young;Rho, Jeong-Hyun;Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.109-120
    • /
    • 2004
  • Since the late of 1990, there have been number of studies on the required number of probe vehicles and/or optimal aggregation interval sizes for travel time estimation and forecasting. However, in general one to five minutes are used as aggregation intervals for the travel time estimation intervals for the travel time estimation and/or forecasting of loop detector system without a reasonable validation. The objective of this study is to deveop models for identifying optimal aggregation interval sizes of loop detector data for travel time estimation and prediction. This study developed Cross Valiated Mean Square Error (CVMSE) model for the link and route travel time forecasting, The developed models were applied to the loop detector data of Kyeongbu expressway. It was found that the optimal aggregation sizes for the travel time estimation and forecasting are three to five minutes and ten to twenty minutes, respectively.