• Title/Summary/Keyword: Forecasting administration

Search Result 292, Processing Time 0.023 seconds

A Study on an Automatical BKLS Measurement By Programming Technology

  • Shin, YeounOuk;Kim, KiBum
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.73-78
    • /
    • 2018
  • This study focuses on presenting the IT program module provided by BKLS measure in order to solve the problem of capital cost due to information asymmetry of external investors and corporate executives. Barron at al(1998) set up a BKLS measure to guide the market by intermediate analysts. The BKLS measure was measured by using the changes in the analyst forecast dispersion and analyst mean forecast error squared. This study suggests a model of the algorithm that the BKLS measure can be provided to all investors immediately by IT program in order to deliver the meaningful value in the domestic capital market as measured. This is a method of generating and analyzing real-time or non-real-time prediction models by transferring the predicted estimates delivered to the Big Data Log Analysis System through the statistical DB to the statistical forecasting engine. Because BKLS measure is not carried out in a concrete method, it is practically very difficult to estimate the BKLS measure. It is expected that the BKLS measure of Barron at al(1998) introduced in this study and the model of IT module provided in real time will be the starting point for the follow-up study for the introduction and realization of IT technology in the future.

Forecasting short-term transportation demand at Gangchon Station in Chuncheon-si using time series model (시계열모형을 활용한 춘천시 강촌역 단기수송수요 예측)

  • Chang-Young Jeon;Jia-Qi Liu;Hee-Won Yang
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.4
    • /
    • pp.343-356
    • /
    • 2023
  • Purpose - This study attempted to predict short-term transportation demand using trains and getting off at Gangchon Station. Through this, we present numerical data necessary for future tourist inflow policies in the Gangchon area of Chuncheon and present related implications. Design/methodology/approach - This study collected and analyzed transportation demand data from Gangchon Station using the Gyeongchun Line and ITX-Cheongchun Train from January 2014 to August 2023. Winters exponential smoothing model and ARIMA model were used to reflect the trend and seasonality of the raw data. Findings - First, transportation demand using trains to get off at Gangchon Station in Chuncheon City is expected to show a continuous increase from 2020 until the forecast period is 2024. Second, the number of passengers getting off at Gangchon Station was found to be highest in May and October. Research implications or Originality - As transportation networks are improving nationwide and people's leisure culture is changing, the number of tourists visiting the Gangchon area in Chuncheon City is continuously decreasing. Therefore, in this study, a time series model was used to predict short-term transportation demand alighting at Gangchon Station. In order to calculate more accurate forecasts, we compared models to find an appropriate model and presented forecasts.

Prediction of the number of Tropical Cyclones over Western North Pacific in TC season (여름철 북서태평양 태풍발생 예측을 위한 통계적 모형 개발)

  • Sohn, Keon-Tae;Hong, Chang-Kon;Kwon, H.-Joe;Park, Jung-Kyu
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.9-15
    • /
    • 2002
  • This paper presents the seasonal forecasting of the occurrence of tropical cyclone (TC) over Western North Pacific (WNP) using the generalized linear model (GLM) and dynamic linear model (DLM) based on 51-year-data (1951-2001) in TC season (June to November). The numbers of TC and TY are predictands and 16 indices (the E1 Nino/Southern Oscillation, the synoptic factors over East asia and WNP) are considered as potential predictors. With 30-year moving windowing, the estimation and prediction of TC and TY are performed using GLM. If GLM forecasts have some systematic error like a bias, DLM is applied to remove the systematic error in order to improve the accuracy of prediction.

  • PDF

Analysis on the Economic Effects of Calibration for Measurement Instrument in Korean Industry (우리나라 산업(産業)의 측정기기에 대한 교정검사실시효과분석(較正檢査實施效果分析))

  • Kim, Dong-Jin;Choe, Jong-Hu;An, Ung-Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.1
    • /
    • pp.83-94
    • /
    • 1991
  • The purpose of this study is to analyze the economic efficiency of the investment for calibrating measurement instruments in manufacturing industries, and to propose the administration scheme of measurement instruments. To investigate the efficieny of calibration, we estimate a multiple regression model composed of variables - product inferiority-rate, calibration rate, etc-, and verify fitness of the model. According to the statistical analysis by LOGIT method, a forecasting model of product inferiority-rate with calibration-related variables is proposed, and its validity is investigated.

  • PDF

Construction of Agricultural Meteorological Data by the New Climate Change Scenario for Forecasting Agricultural Disaster - For 111 Agriculture Major Station - (농업재해 예측을 위한 신 기후변화 시나리오의 농업기상자료 구축 - 111개 농업주요지점을 대상으로 -)

  • Joo, Jin-Hwan;Jung, Nam-Su;Seo, Myung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.87-99
    • /
    • 2013
  • For analysis of climate change effects on agriculture, precise agricultural meteorological data are needed to target period and site. In this study, agricultural meteorological data under new climate change scenario (RCP 8.5) are constructed from 2011 to 2099 in 111 agriculture major station suggested by Rural Development Administration (RDA). For verifying constructed data, comparison with field survey data in Suwon shows same trend in maximum temperature, minimum temperature, average temperature, and precipitation in 2011. Also comparison with normals of daily data in 2025, 2055, and 2085 shows reliability of constructed data. In analysis of constructed data, we can calculate sum of days over temperature and under temperature. Results effectively show the change of average temperature in each region and odd days of precipitation which means flood and dry days in target region.

Re-engineering Distribution Using Web-based B2B Technology

  • Kim, Gyeung-min
    • Journal of Distribution Research
    • /
    • v.6 no.1
    • /
    • pp.22-35
    • /
    • 2001
  • The focus of Business Process Re-engineering (BPR) has been extended to inter-business process that cuts across independent companies. Combined with Supply Chain Management (SCM), inter-business process reengineering (IBPR) focuses on synchronization of business activities among trading partners to achieve performance improvements in inventory management and cycle time. This paper reviews the business process reengineering movement from the historical perspective and presents a case of inter-business process reengineering using the latest internet-based Business-to- Business (B2B) technology based on Collaborative Planning, Forecasting, and Replenishment (CPFR). The case demonstrates how CPFR technology reengineers the distribution process between Heineken USA and its distributors. As world's first implementor of web-based collaborative planning system, Heineken USA reduces cycle time from determining the customer need to delivery of the need by 50% and increases sales revenue by 10%. B2B commerce on the internet is predicted to grow from $90 billion in 1999 to $2.0 trillion in 2003. This paper provides the management with the bench-marking case on inter-business process reengineering using B2B e-commerce technology.

  • PDF

Artificial Intelligence and Air Pollution : A Bibliometric Analysis from 2012 to 2022

  • Yong Sauk Hau
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.48-56
    • /
    • 2024
  • The application of artificial intelligence (AI) is becoming increasingly important to coping with air pollution. AI is effective in coping with it in various ways including air pollution forecasting, monitoring, and control, which is attracting a lot of attention. This attention has created high need for analyzing studies on AI and air pollution. To contribute for satisfying it, this study performed bibliometric analyses on the studies on AI and air pollution from 2012 to 2022 using the Web of Science database. This study analyzed them in various aspects such as the trend in the number of articles, the trend in the number of citations, the top 10 countries of origin, the top 10 research organizations, the top 10 research funding agencies, the top 10 journals, the top 10 articles in terms of total citations, and the distribution by languages. This study not only reports the bibliometric analysis results but also reveals the eight distinct features in the research steam in studies on AI and air pollution, identified from the bibliometric analysis results. They are expected to make a useful contribution for understanding the research stream in AI and air pollution.

Homogeneous Regions Classification and Regional Differentiation of Snowfall (적설의 동질지역 구분과 지역 차등화)

  • KIM, Hyun-Uk;SHIM, Jae-Kwan;CHO, Byung-Choel
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.42-51
    • /
    • 2017
  • Snowfall is an important natural hazard in Korea. In recent years, the socioeconomic importance of impact-based forecasts of meteorological phenomena have been highlighted. To further develop forecasts, we first need to analyze the climatic characteristics of each region. In this study, homogeneous regions for snowfall analysis were classified using a self-organizing map for impact-based forecast and warning services. Homogeneous regions of snowfall were analyzed into seven clusters and the characteristics of each group were investigated using snowfall, observation days, and maximum snowfall. Daegwallyeong, Gangneung-si, and Jeongeup-si were classified as areas with high snowfall and Gyeongsangdo was classified as an area with low snowfall. Comparison with previous studies showed that representative areas were well distinguished, but snowfall characteristics were found to be different. The results of this study are of relevance to future policy decisions that use impact-based forecasting in each region.

The Diffusion of Internet of Things: Forecasting Technologies and Company Strategies using Qualitative and Quantitative Approach (사물인터넷의 확산: 정성적·정량적 기법을 이용한 기술 및 기업 전략 예측)

  • Lee, Saerom;Jahng, Jungjoo
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.4
    • /
    • pp.19-39
    • /
    • 2015
  • Internet of Things (IoT) is expected to provide efficiency and convenience in human life by integrating the Internet into the things that we use in daily lives. IoT can not only create new businesses but also can bring great changes in our lives thanks to the various ways of technical application: defining relationships among things or automatic use of technology by analyzing the usage pattern. This study uses the qualitative research of interviewing the experts to predict the changes that IoT technology is expected to bring in our lives. In addition, this paper analyzes news articles about internet of things in Korea using text-network analysis. This study also discusses the factors which need to be considered to put IoT into successful use in business contexts.

Long-term Forecast of Seasonal Precipitation in Korea using the Large-scale Predictors (광역규모 예측인자를 이용한 한반도 계절 강수량의 장기 예측)

  • Kim, Hwa-Su;Kwak, Chong-Heum;So, Seon-Sup;Suh, Myoung-Seok;Park, Chung-Kyu;Kim, Maeng-Ki
    • Journal of the Korean earth science society
    • /
    • v.23 no.7
    • /
    • pp.587-596
    • /
    • 2002
  • A super ensemble model was developed for the seasonal prediction of regional precipitation in Korea using the lag correlated large scale predictors, based on the empirical orthogonal function (EOF) analysis and multiple linear regression model. The predictability of this model was also evaluated by cross-validation. Correlation between the predicted and the observed value obtained from the super ensemble model showed 0.73 in spring, 0.61 in summer, 0.69 in autumn and 0.75 in winter. The predictability of categorical forecasting was also evaluated based on the three classes such as above normal, near normal and below normal that are clearly defined in terms of a priori specified by threshold values. Categorical forecasting by the super ensemble model has a hit rate with a range from 0.42 to 0.74 in seasonal precipitation.