• Title/Summary/Keyword: Forecasting Accuracy

Search Result 668, Processing Time 0.029 seconds

Development of radar-based quantitative precipitation forecasting using spatial-scale decomposition method for urban flood management (도시홍수예보를 위한 공간규모분할기법을 이용한 레이더 강우예측 기법 개발)

  • Yoon, Seongsim
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.335-346
    • /
    • 2017
  • This study generated the radar-based forecasted rainfall using spatial-scale decomposition method (SCDM) and evaluated the hydrological applicability with forecasted rainfall by KMA (MAPLE, KONOS) in terms of urban flood forecasting. SCDM is to separate the small-scale field (convective cell) and large-scale field (straitform cell) from radar rainfield. And each separated field is forecasted by translation model and storm tracker nowcasting model for improvement of QPF accuracy. As the evaluated results of various QPF for three rainfall events in Seoul and Metropolitan area, proposed method showed better prediction accuracy than MAPLE and KONOS considering the simplicity of the methodology. In addition, this study assessed the urban hydrological applicability for Gangnam basin. As the results, KONOS simulated the peak of water depth more accurately than MAPLE and SCDM, however cannot simulated the timeseries pattern of water depth. In the case of SCDM, the quantitative error was larger than observed water depth, but the simulated pattern was similar to observation. The SCDM will be useful information for flood forecasting if quantitative accuracy is improved through the adjustment technique and blending with NWP.

A Scheme for Reducing Load Forecast Error During Weekends Near Typhoon Hit (태풍 발생 인접 주말의 수요예측 오차 감소 방안)

  • Park, Jeong-Do;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1700-1705
    • /
    • 2009
  • In general, short term load forecasting is based on the periodical load pattern during a day or a week. Therefore, the conventional methods do not expose stable performance to every day during a year. Especially for anomalous weather conditions such as typhoons, the methods have a tendency to show the conspicuous accuracy deterioration. Furthermore, the tendency raises the reliability and stability problems of the conventional load forecast. In this study, a new load forecasting method is proposed in order to increase the accuracy of the forecast result in case of anomalous weather conditions such as typhoons. For irregular weather conditions, the sensitivity between temperature and daily load is used to improve the accuracy of the load forecast. The proposed method was tested with the actual load profiles during 14 years, which shows that the suggested scheme considerably improves the accuracy of the load forecast results.

Short-term Wind Farm Power Forecasting Using Multivariate Analysis to Improve Wind Power Efficiency (풍력발전 설비 효율화를 위한 다변량 분석을 이용한 풍력발전단지 단기 출력 예측 방법)

  • Wi, Young-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.54-61
    • /
    • 2015
  • This paper presents short-term wind farm power forecasting method using multivariate analysis and time series. Based on factor analysis, the proposed method makes new independent variables which newly composed by raw independent variables such as wind speed, ramp rate, wind power. Newly created variables are used in the time series model for forecasting wind farm power. To demonstrate the improved accuracy, the proposed method is compared with persistence model commonly used as reference in wind power forecasting using data from Jeju Island. The results of case studies are presented to show the effectiveness of the proposed forecasting method.

Development of Electric Load Forecasting System Using Neural Network (신경회로망을 이용한 단기전력부하 예측용 시스템 개발)

  • Kim, H.S.;Mun, K.J.;Hwang, G.H.;Park, J.H.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1522-1522
    • /
    • 1999
  • This paper proposes the methods of short-term load forecasting using Kohonen neural networks and back-propagation neural networks. Historical load data is divided into 5 patterns for the each seasonal data using Kohonen neural networks and using these results, load forecasting neural network is used for next day hourly load forecasting. Normal days and holidays are forecasted. For load forecasting in summer, max-, and min-temperature data are included in neural networks for a better forecasting accuracy. To show the possibility of the proposed method, it was tested with hourly load data of Korea Electric Power Corporation. (1993-1997)

  • PDF

Fast Data Assimilation using Kernel Tridiagonal Sparse Matrix for Performance Improvement of Air Quality Forecasting (대기질 예보의 성능 향상을 위한 커널 삼중대각 희소행렬을 이용한 고속 자료동화)

  • Bae, Hyo Sik;Yu, Suk Hyun;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.363-370
    • /
    • 2017
  • Data assimilation is an initializing method for air quality forecasting such as PM10. It is very important to enhance the forecasting accuracy. Optimal interpolation is one of the data assimilation techniques. It is very effective and widely used in air quality forecasting fields. The technique, however, requires too much memory space and long execution time. It makes the PM10 air quality forecasting difficult in real time. We propose a fast optimal interpolation data assimilation method for PM10 air quality forecasting using a new kernel tridiagonal sparse matrix and CUDA massively parallel processing architecture. Experimental results show the proposed method is 5~56 times faster than conventional ones.

Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models

  • Lee, Young-Chan
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2000.11a
    • /
    • pp.36-44
    • /
    • 2000
  • The purpose of this study is to introduce a more efficient forecasting technique, which could help result the reduction of cost in removing the waste of airline in-flight meals. We will use a neural network approach known to many researchers as the “Outstanding Forecasting Technique”. We employed a multi-layer perceptron neural network using a backpropagation algorithm. We also suggested using other related information to improve the forecasting performances of neural networks. We divided the data into three sets, which are training data set, cross validation data set, and test data set. Time lag variables are still employed in our model according to the general view of time series forecasting. We measured the accuracy of our model by “Mean Square Error”(MSE). The suggested model proved most excellent in serving economy class in-flight meals. Forecasting the exact amount of meals needed for each airline could reduce the waste of meals and therefore, lead to the reduction of cost. Better yet, it could enhance the cost competition of each airline, keep the schedules on time, and lead to better service.

  • PDF

Short-term 24 hourly Load forecasting for holidays using fuzzy linear regression (퍼지 선형회귀분석법을 이용한 특수일의 24시간 단기수요예측)

  • Ha, Seong-Kwan;Song, Kyung-Bin;Kim, Byung-Su
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.434-436
    • /
    • 2004
  • Load forecasting is essential in the electricity market for the participants to manage the market efficiently and stably. The percentage errors of 24 hourly load forecasting for holidays is relatively large. In this paper, we propose the maximum and minimum load forecasting method for holidays using a fuzz linear regression algorithm. 24 hourly loads are forecasted from the maximum and minimum loads and the 24 hourly normalized values. The proposed algorithm is tested for 24 hourly load forecasting in 1996. The test results show the proposed algorithm improves the accuracy of the load forecasting.

  • PDF

Short-Term Load Forecasting Exponential Smoothoing in Consideration of T (온도를 고려한 지수평활에 의한 단기부하 예측)

  • 고희석;이태기;김현덕;이충식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.730-738
    • /
    • 1994
  • The major advantage of the short-term load forecasting technique using general exponential smoothing is high accuracy and operational simplicity, but it makes large forecasting error when the load changes repidly. The paper has presented new technique to improve those shortcomings, and according to forecasted the technique proved to be valid for two years. The structure of load model is time function which consists of daily-and temperature-deviation component. The average of standard percentage erro in daily forecasting for two years was 2.02%, and this forecasting technique has improved standard erro by 0.46%. As relative coefficient for daily and seasonal forecasting is 0.95 or more, this technique proved to be valid.

  • PDF

Weekly maximum power demand forecasting using model in consideration of temperature estimation (기온예상치를 고려한 모델에 의한 주간최대전력수요예측)

  • 고희석;이충식;김종달;최종규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.511-516
    • /
    • 1996
  • In this paper, weekly maximum power demand forecasting method in consideration of temperature estimation using a time series model was presented. The method removing weekly, seasonal variations on the load and irregularities variation due to unknown factor was presented. The forecasting model that represent the relations between load and temperature which get a numeral expected temperature based on the past 30 years(1961~1990) temperature was constructed. Effect of holiday was removed by using a weekday change ratio, and irregularities variation was removed by using an autoregressive model. The results of load forecasting show the ability of the method in forecasting with good accuracy without suffering from the effect of seasons and holidays. Percentage error load forecasting of all seasons except summer was obtained below 2 percentage. (author). refs., figs., tabs.

  • PDF

The Spatial Electric Load Forecasting Algorithm using the Multiple Regression Analysis Method (다중회귀분석법을 이용한 지역전력수요예측 알고리즘)

  • Nam, Bong-Woo;Song, Kyung-Bin;Kim, Kyu-Ho;Cha, Jun-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.63-70
    • /
    • 2008
  • This paper resents the spatial electric load forecasting algorithm using the multiple regression analysis method which is enhanced from the algorithm of the DISPLAN(Distribution Information System PLAN). In order to improve the accuracy of the spatial electrical load forecasting, input variables are selected for GRDP(Gross Regional Domestic Product), the local population and the electrical load sales of the past year. Tests are performed to analyze the accuracy of the proposed method for Gyeong-San City, Gu-Mi City, Gim-Cheon City and Yeong-Ju City of North Gyeongsang Province. Test results show that the overall accuracy of the proposed method is improved the percentage error 11.2[%] over 12[%] of the DISPLAN. Specially, the accuracy is enhanced a lot in the case of high variability of input variables. The proposed method will be used to forecast local electric loads for the optimal investment of distribution systems.