• Title/Summary/Keyword: Forecasting Accuracy

Search Result 668, Processing Time 0.026 seconds

Time Series Analysis Using Neural Networks : Forecasting Performance Analysis with M1-Competition Data (신경망을 이용한 시계열 분석 : M1-Competition Data에 대한 예측성과 분석)

  • 지원철
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.135-148
    • /
    • 1995
  • Neural Networks have been advocated as an alternative to statistical forecasting methods. However, the empirical evidences are not consistent. In the present experiments, multi-layered perceptron (MLP) are adopted as approximator to the time series generating processes. To prevent the MLP from being overfitted to the given time series, the information obtained from ARMA modeling is used to determine the architecture of MLP. The proposed approach was tested empirically using the subsamples of the 111 time series used in the first Markridakis Competition. The forecasting results were analyzed to find out the factors that affect the performance of MLP. The experimental results show that the proposed approach outperforms ARMA models in terms of fitting and forecasting accuracy. In addition, it is found that the use of deseasonalized data improves the forecasting accuracy of MLP.

  • PDF

Short-Term Photovoltaic Power Generation Forecasting Based on Environmental Factors and GA-SVM

  • Wang, Jidong;Ran, Ran;Song, Zhilin;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.64-71
    • /
    • 2017
  • Considering the volatility, intermittent and random of photovoltaic (PV) generation systems, accurate forecasting of PV power output is important for the grid scheduling and energy management. In order to improve the accuracy of short-term power forecasting of PV systems, this paper proposes a prediction model based on environmental factors and support vector machine optimized by genetic algorithm (GA-SVM). In order to improve the prediction accuracy of this model, weather conditions are divided into three types, and the gray correlation coefficient algorithm is used to find out a similar day of the predicted day. To avoid parameters optimization into local optima, this paper uses genetic algorithm to optimize SVM parameters. Example verification shows that the prediction accuracy in three types of weather will remain at between 10% -15% and the short-term PV power forecasting model proposed is effective and promising.

Comparison of Price Predictive Ability between Futures Market and Expert System for WTI Crude Oil Price (선물시장과 전문가예측시스템의 가격예측력 비교 - WTI 원유가격을 대상으로 -)

  • Yun, Won-Cheol
    • Environmental and Resource Economics Review
    • /
    • v.14 no.1
    • /
    • pp.201-220
    • /
    • 2005
  • Recently, we have been witnessing new records of crude oil price hikes. One question which naturally arises would be the possibility and accuracy of forecasting crude oil prices. This study tries to answer the relative predictability of futures prices compared to the forecasts based on experts system. Using WTI crude oil spot and futures prices, this study performs simple statistical comparisons in forecasting accuracy and a formal test of differences in forecasting errors. According to statistical results, WTI crude oil futures market turns out to be equally efficient relative to EIA experts system. Consequently, WTI crude oil futures market could be utilized as a market-based tool for price forecasting and/or resource allocation for both of petroleum producers and consumers.

  • PDF

Forecasting the Container Volumes of Busan Port using LSTM (LSTM을 활용한 부산항 컨테이너 물동량 예측)

  • Kim, Doo-hwan;Lee, Kangbae
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.2
    • /
    • pp.53-62
    • /
    • 2020
  • The maritime and port logistics industry is closely related to global trade and economic activity, especially for Korea, which is highly dependent on trade. As the largest port in Korea, Busan Port processes 75% of the country's container cargo; the port is therefore extremely important in terms of the country's national competitiveness. Port container cargo volume forecasts influence port development and operation strategies, and therefore require a high level of accuracy. However, due to unexpected and sudden changes in the port and maritime transportation industry, it is difficult to increase the accuracy of container volume forecasting using existing time series models. Among deep learning models, this study uses the LSTM model to enhance the accuracy of container cargo volume forecasting for Busan Port. To evaluate the model's performance, the forecasting accuracies of the SARIMA and LSTM models are compared. The findings reveal that the forecasting accuracy of the LSTM model is higher than that of the SARIMA model, confirming that the forecasted figures fully reflect the actual measurement figures.

The Daily Peak Load Forecasting in Summer with the Sensitivity of Temperature (온도에 대한 민감도를 고려한 하절기 일 최대전력수요 예측)

  • 공성일;백영식;송경빈;박지호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.6
    • /
    • pp.358-363
    • /
    • 2004
  • Due to the weather sensitivity of the power load, it is difficult to forecast accurately the peak power load of summer season. We improve the accuracy of the load forecasting considering weather condition. We introduced the sensitivity of temperature and proposed an improved forecasting algorithm. The proposed algorithm shows that the error of the load forecasting is 1.5%.

The Flood Forecasting Model for the In-do Brdg. by the Multi-regression Analysis between the Water-level and the Influence Parameters (한강인도교 수위와 영향인자간의 다중회귀분석에 의한 홍수위 예측모형)

  • 윤강훈;신현민
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.55-69
    • /
    • 1994
  • In order to enhance the short-term flood forecasting accuracy of the water level of the In-do Brdg., three statistical flood forecasting models are presented models are presented and the forecasting accuracies and stabilities of the models are studied. The presented statistical models are as follows: The multi-input model by the multi-regression analysis between the water level of the In-do Brdg. and the influence parameters(Model MM). The two-level multi parameter model according to the water level tendency(Model 2MP). Among the three models, the Model MM showed the lowest forecasting accuracy, the model 2MP showed the highest forecasting accuracy, although this model sometimes became unstable and diverged. The model MMP forecasted the flood less accurately than model 2MP, but it gave more stable forecasting results.

  • PDF

Investigating the Correlation between Cognition and Emotion Charateristics and Judgmental Time-Series Forecasting Using a Self-Organizing Neural Network (자기조직 신경망을 이용한 인지 및 감성 특성의 직관적 시계열 예측과의 상관성 조사)

  • Yoo, Hyeon-Joong;Park, Hung-Kook;Song, Byoung-Ho
    • Asia pacific journal of information systems
    • /
    • v.11 no.4
    • /
    • pp.175-186
    • /
    • 2001
  • Though people frequently rely on intuition in managing activities, they rarely use it in developing effective decision-making support systems. In this report, we investigate the correlations between characteristics of cognition and emotion and judgmental time-series forecasting accuracy, and compare their strengths by using a self-supervised adaptive neural network. Through the experiments, we hope to help find a desirable atmosphere for decision-making. Our experiments showed that both cognition characteristics and emotion characteristics had correlations with the time-series forecasting accuracy, and that cognition characteristics had larger correlation than emotion characteristics. We also found that conceptual style had larger correlation than behavioral or analytical styles with the accuracy.

  • PDF

Forecasting Day-ahead Electricity Price Using a Hybrid Improved Approach

  • Hu, Jian-Ming;Wang, Jian-Zhou
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2166-2176
    • /
    • 2017
  • Electricity price prediction plays a crucial part in making the schedule and managing the risk to the competitive electricity market participants. However, it is a difficult and challenging task owing to the characteristics of the nonlinearity, non-stationarity and uncertainty of the price series. This study proposes a hybrid improved strategy which incorporates data preprocessor components and a forecasting engine component to enhance the forecasting accuracy of the electricity price. In the developed forecasting procedure, the Seasonal Adjustment (SA) method and the Ensemble Empirical Mode Decomposition (EEMD) technique are synthesized as the data preprocessing component; the Coupled Simulated Annealing (CSA) optimization method and the Least Square Support Vector Regression (LSSVR) algorithm construct the prediction engine. The proposed hybrid approach is verified with electricity price data sampled from the power market of New South Wales in Australia. The simulation outcome manifests that the proposed hybrid approach obtains the observable improvement in the forecasting accuracy compared with other approaches, which suggests that the proposed combinational approach occupies preferable predication ability and enough precision.

Runoff Forecasting Model by the Combination of Fuzzy Inference System and Neural Network (Fuzzy추론 시스템과 신경회로망을 결합한 하천유출량 예측)

  • Heo, Chang-Hwan;Lim, Kee-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.21-31
    • /
    • 2007
  • This study is aimed at the development of a runoff forecasting model by using the Fuzzy inference system and Neural Network model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The Neuro-Fuzzy (NF) model were used in this study. The NF model, recently received a great deal of attention, improve the existing Neural Networks by the aid of the Fuzzy theory applied to each node. The study area is the downstreams of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model respectively. The schematic diagram method and the statistical analysis are conducted to evaluate the feasibility of rainfall-runoff modeling. The model accuracy was rapidly decreased as the forecasting time became longer. The NF model can give accurate runoff forecasts up to 4 hours ahead in standard above the Determination coefficient $(R^2)$ 0.7. In the comparison of the runoff forecasting using the NF and TANK models, characteristics of peak runoff in the TANK model was higher than ones in the NF models, but peak values of hydrograph in the NF models were similar.

A Study on the Optimal Trading Frequency Pattern and Forecasting Timing in Real Time Stock Trading Using Deep Learning: Focused on KOSDAQ (딥러닝을 활용한 실시간 주식거래에서의 매매 빈도 패턴과 예측 시점에 관한 연구: KOSDAQ 시장을 중심으로)

  • Song, Hyun-Jung;Lee, Suk-Jun
    • The Journal of Information Systems
    • /
    • v.27 no.3
    • /
    • pp.123-140
    • /
    • 2018
  • Purpose The purpose of this study is to explore the optimal trading frequency which is useful for stock price prediction by using deep learning for charting image data. We also want to identify the appropriate time for accurate forecasting of stock price when performing pattern analysis. Design/methodology/approach In order to find the optimal trading frequency patterns and forecast timings, this study is performed as follows. First, stock price data is collected using OpenAPI provided by Daishin Securities, and candle chart images are created by data frequency and forecasting time. Second, the patterns are generated by the charting images and the learning is performed using the CNN. Finally, we find the optimal trading frequency patterns and forecasting timings. Findings According to the experiment results, this study confirmed that when the 10 minute frequency data is judged to be a decline pattern at previous 1 tick, the accuracy of predicting the market frequency pattern at which the market decreasing is 76%, which is determined by the optimal frequency pattern. In addition, we confirmed that forecasting of the sales frequency pattern at previous 1 tick shows higher accuracy than previous 2 tick and 3 tick.