• Title/Summary/Keyword: Forecasting Ability

Search Result 106, Processing Time 0.024 seconds

A Study on the Resilient Supply of Agricultural Water in Jeju Island by Forecasting Future Demand (미래 수요예측을 통한 제주도 농업용수 회복탄력적 공급 방안에 관한 연구)

  • Go, Jea-han;Jeung, Minhyuk;Beom, Jina;Sung, Mu-hong;Jung, Hyoung-mo;Yoo, Seung-hwan;Yoon, Kwang-sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.71-83
    • /
    • 2020
  • Resilience is the capacity to maintain essential services under a range of circumstances from normal to extreme. It is achieved through the ability of assets, networks, systems and management to anticipate, absorb and recover from disturbance. It requires adaptive capacity in respect of current and future risks and uncertainties as well as experience to date. The agricultural infrastructures with high resilience can not only reduce the size of the disaster relatively, but also minimize the loss by reducing the time required for recovery. This study aims to evaluate the most suitable drought countermeasures with the analysis of various resilience indices by predicting future agricultural water shortage under land use and climate change scenarios for agricultural areas in Jeju Island. The results showed that the permanent countermeasure is suitable than the temporary countermeasures as drought size and the cost required for recovery increase. Wide-area water supply system, which is a kind of water grid system, is identified as the most advantageous among countermeasures. It is recommended to evaluate the capability of agricultural infrastructure against drought with the various Resilience Indices for reliable assessment of long-term effect.

Estimation of the Flash Flood Index by the Probable Rainfall Data for Ungauged Catchments (미계측 유역에서의 확률강우에 대한 돌발홍수지수 산정)

  • Kim, Eung-Seok;Choi, Hyun-Il;Jee, Hong-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.81-88
    • /
    • 2010
  • As there occurs recently and frequently a flash flood due to the climate change, a sudden local flood of great volume and short duration caused by heavy or excessive rainfall in a short period of time over a small area, it is increasing that significant danger and loss of life and property in Korea as well as the whole world. Since a flash flood usually occurs as the result of intense rainfall over small steep slope regions and has rapid runoff and debris flow, a flood rises quite quickly with little or no advance warning to prevent flood damage. The aim of this study is to quantify the severity of flash food by estimation of a flash flood index(FFI) from probability rainfall data in a study basin. FFI-D-F(FFI-Duration-Frequency) curves that present the relative severity of flash flood are developed for a study basin to provide regional basic information for the local flood forecasting and warning system particularly in ungauged catchments. It is also expected that FFI-D-F curves can be utilized for evaluation on flash flood mitigation ability and residual flood risk of both existing and planned flood control facilities.

A study on cabbage wholesale price forecasting model using unstructured agricultural meteorological data (비정형 농업기상자료를 활용한 배추 도매가격 예측모형 연구)

  • Jang, SooHee;Chun, Heuiju;Cho, Inho;Kim, DongHwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.617-624
    • /
    • 2017
  • The production of cabbage, which is mainly cultivated in open field, varies greatly depending on weather conditions, and the price fluctuation is largely due to the presence of a substitute crop. Previous studies predicted the production of cabbage using actual weather data, but in this study, we predicted the wholesale price using unstructured agricultural meteorological data on the web. From January 2009 to October 2016, we collected documents including the cabbage on the portal site, and extracted keywords related to weather in the collected documents. We compared the forecast wholesale prices of simple models and unstructured agricultural weather models at the time of shipment. The simple model is AR model using only wholesale price, and the unstructured agricultural weather model is AR model using unstructured agricultural weather data additionally. As a result, the performance of unstructured agricultural weather model was has been found to be more accurate prediction ability.

Compressive strength prediction of CFRP confined concrete using data mining techniques

  • Camoes, Aires;Martins, Francisco F.
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.233-241
    • /
    • 2017
  • During the last two decades, CFRP have been extensively used for repair and rehabilitation of existing structures as well as in new construction applications. For rehabilitation purposes CFRP are currently used to increase the load and the energy absorption capacities and also the shear strength of concrete columns. Thus, the effect of CFRP confinement on the strength and deformation capacity of concrete columns has been extensively studied. However, the majority of such studies consider empirical relationships based on correlation analysis due to the fact that until today there is no general law describing such a hugely complex phenomenon. Moreover, these studies have been focused on the performance of circular cross section columns and the data available for square or rectangular cross sections are still scarce. Therefore, the existing relationships may not be sufficiently accurate to provide satisfactory results. That is why intelligent models with the ability to learn from examples can and must be tested, trying to evaluate their accuracy for composite compressive strength prediction. In this study the forecasting of wrapped CFRP confined concrete strength was carried out using different Data Mining techniques to predict CFRP confined concrete compressive strength taking into account the specimens' cross section: circular or rectangular. Based on the results obtained, CFRP confined concrete compressive strength can be accurately predicted for circular cross sections using SVM with five and six input parameters without spending too much time. The results for rectangular sections were not as good as those obtained for circular sections. It seems that the prediction can only be obtained with reasonable accuracy for certain values of the lateral confinement coefficient due to less efficiency of lateral confinement for rectangular cross sections.

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

A Case of Establishing Robo-advisor Strategy through Parameter Optimization (금융 지표와 파라미터 최적화를 통한 로보어드바이저 전략 도출 사례)

  • Kang, Mincheal;Lim, Gyoo Gun
    • Journal of Information Technology Services
    • /
    • v.19 no.2
    • /
    • pp.109-124
    • /
    • 2020
  • Facing the 4th Industrial Revolution era, researches on artificial intelligence have become active and attempts have been made to apply machine learning in various fields. In the field of finance, Robo Advisor service, which analyze the market, make investment decisions and allocate assets instead of people, are rapidly expanding. The stock price prediction using the machine learning that has been carried out to date is mainly based on the prediction of the market index such as KOSPI, and utilizes technical data that is fundamental index or price derivative index using financial statement. However, most researches have proceeded without any explicit verification of the prediction rate of the learning data. In this study, we conducted an experiment to determine the degree of market prediction ability of basic indicators, technical indicators, and system risk indicators (AR) used in stock price prediction. First, we set the core parameters for each financial indicator and define the objective function reflecting the return and volatility. Then, an experiment was performed to extract the sample from the distribution of each parameter by the Markov chain Monte Carlo (MCMC) method and to find the optimum value to maximize the objective function. Since Robo Advisor is a commodity that trades financial instruments such as stocks and funds, it can not be utilized only by forecasting the market index. The sample for this experiment is data of 17 years of 1,500 stocks that have been listed in Korea for more than 5 years after listing. As a result of the experiment, it was possible to establish a meaningful trading strategy that exceeds the market return. This study can be utilized as a basis for the development of Robo Advisor products in that it includes a large proportion of listed stocks in Korea, rather than an experiment on a single index, and verifies market predictability of various financial indicators.

A Study for the Development of Motion Picture Box-office Prediction Model (영화 흥행 결정 요인과 흥행 성과 예측 연구)

  • Kim, Yon-Hyong;Hong, Jeong-Han
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.859-869
    • /
    • 2011
  • Interest has increased in academic research regarding key factors that drive box-office success as well as the ability to predict the box-office success of a movie from a commercial perspective. This study analyzed the relationship between key success factors of a movie and box office records based on movies released in 2010 in Korea. At the pre-production investment decision-making stage, the movie genre, motion picture rating, director power, and actor power were statistically significant. At the stage of distribution decision-making process after movie production, among other factors, the influence of star actors, number of screens, power of distributors, and social media turned out to be statistically significant. We verified movie success factors through the application of a Multinomial Logit Model that used the concept of choice probabilities. The Multinomial Logit Model resulted in a higher level of accuracy in predicting box-office success compared to the Artificial Neural Network and Discriminant Analysis.

A Study on Application of GSIS for Transportation Planning and Analysis of Traffic Volume (GSIS를 이용한 교통계획과 교통량분석에 관한 연구)

  • Choi, Jae-Hwa;Park, Hee-Ju
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.117-125
    • /
    • 1993
  • GSIS is a system that contains spatially referenced data that can be analyzed and converted to information for a specific set of purpose, or application. The key feature of a GSIS is the analysis of data to produce new information. The current emphasis in the transportation is to implement GSIS in conjunction with real time systems Requirements for a transportation GSIS are very different from the traditional GSIS software that has been designed for environmental and natural resource applications. A transportation GSIS may need to include the ability for franc volume, forecasting, pavement management A regional transportation planning model is actually a set of models that are used to inventory and then forecast a region's population, employment, income, housing and the demand of automobile and transit in a region. The data such as adminstration bound, m of landuse, road networks, location of schools, offices with populations are used in this paper. Many of these data are used for analyzing of traffic volume, traffic demand, time of mad construction using GSIS.

  • PDF

A Study on an Estimation of Optimum Rice Farm Size (수작농가(水稻作農家)의 적정영농규모계측(適正營農規模計測)에 관(關)한 연구(硏究) -강원도 철원군 평야지역 농가를 중심으로-)

  • Kim, Jong-Pil;Lim, Jae-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.32 no.1
    • /
    • pp.81-94
    • /
    • 2005
  • This study is aimed at giving the basic information for individual farm households to make decisions for optimizing their farm sizes and for the government to implement farm size optimization policies through the identification of combinations among rice production factors in plain areas like Cheolwon district and the suggestion of the optimal farm sizes of individual farmers based on the scale of economy calculated. The data of agricultural production costs of 50 rice farmers in the plain area which is located in Dongsong-eup Cholwon district, Kangwon province were used in the analysis. The 'translog' cost function among various methods which is a flexible function type was adopted to calculate the scale of economy in rice production. Seemingly unrelated regression(SUR) method was used in forecasting functions and processing other statistics by SHAZAM which is one of the computer aid program for quantitative econometric analysis. In conclusion, the long-run average cost(LAC) curve showed 'U-shape' which was different from 'L-type' one which was shown in the previous studies by others. The lowest point of the LAC was 9.764ha and the concerned production cost amounted to 633 Won/kg. Based on these results, it have to be suggested that around 10 ha of paddy is the target size for policy assistances to save costs under the present level of farming practices and technology. The above results show that the rice production costs could be saved up to 10ha in Cheolwon plain area which is a typical paddy field. However, land use, land condition, land ownership and manager's ability which may affect scale of economy should be considered. Furthermore, reasonable management will have to be realized by means of labor saving technology and cost saving management skill like enlargement of farm size of rice.

  • PDF

Simulation Modeling for Production Scheduling under Make-To-Order Production Environment : Focusing on the Flat Glass Production Environment (주문생산 방식의 생산계획 수립을 위한 시뮬레이션 모델 설계 : 판유리 제조 공정을 중심으로)

  • Choi, Yong-Hee;Hwang, Seung-June
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.64-73
    • /
    • 2019
  • The manufacturing companies under Make-To-Order (MTO) production environment face highly variable requirements of the customers. It makes them difficult to establish preemptive production strategy through inventory management and demand forecasting. Therefore, the ability to establish an optimal production schedule that incorporates the various requirements of the customers is emphasized as the key success factor. In this study, we suggest a process of designing the simulation model for establishing production schedule and apply this model to the case of a flat glass processing company. The flat glass manufacturing industry is under MTO production environment. Academic research of flat glass industry is focused on minimizing the waste in the cutting process. In addition, in the practical view, the flat glass manufacturing companies tend to establish the production schedule based on the intuition of production manager and it results in failure of meeting the due date. Based on these findings, the case study aims to present the process of drawing up a production schedule through simulation modeling. The actual data of Korean flat glass processing company were used to make a monthly production schedule. To do this, five scenarios based on dispatching rules are considered and each scenario is evaluated by three key performance indicators for delivery compliance. We used B2MML (Business To Manufacturing Markup Language) schema for integrating manufacturing systems and simulations are carried out by using SIMIO simulation software. The results provide the basis for determining a suitable production schedule from the production manager's perspective.