• 제목/요약/키워드: Forecasting Ability

검색결과 106건 처리시간 0.026초

SSA를 이용한 일 단위 물수요량 단기 예측에 관한 연구 (A Study of Short Term Forecasting of Daily Water Demand Using SSA)

  • 권현한;문영일
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.758-769
    • /
    • 2004
  • The trends and seasonalities of most time series have a large variability. The result of the Singular Spectrum Analysis(SSA) processing is a decomposition of the time series into several components, which can often be identified as trends, seasonalities and other oscillatory series, or noise components. Generally, forecasting by the SSA method should be applied to time series governed (may be approximately) by linear recurrent formulae(LRF). This study examined forecasting ability of SSA-LRF model. These methods are applied to daily water demand data. These models indicate that most cases have good ability of forecasting to some extent by considering statistical and visual assessment, in particular forecasting validity shows good results during 15 days.

베이지안 변수선택 기법을 이용한 발틱건화물운임지수(BDI) 예측 (Forecasting the Baltic Dry Index Using Bayesian Variable Selection)

  • 한상우;김영민
    • 무역학회지
    • /
    • 제47권5호
    • /
    • pp.21-37
    • /
    • 2022
  • Baltic Dry Index (BDI) is difficult to forecast because of the high volatility and complexity. To improve the BDI forecasting ability, this study apply Bayesian variable selection method with a large number of predictors. Our estimation results based on the BDI and all predictors from January 2000 to September 2021 indicate that the out-of-sample prediction ability of the ADL model with the variable selection is superior to that of the AR model in terms of point and density forecasting. We also find that critical predictors for the BDI change over forecasts horizon. The lagged BDI are being selected as an key predictor at all forecasts horizon, but commodity price, the clarksea index, and interest rates have additional information to predict BDI at mid-term horizon. This implies that time variations of predictors should be considered to predict the BDI.

Time-Series Forecasting Based on Multi-Layer Attention Architecture

  • Na Wang;Xianglian Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.1-14
    • /
    • 2024
  • Time-series forecasting is extensively used in the actual world. Recent research has shown that Transformers with a self-attention mechanism at their core exhibit better performance when dealing with such problems. However, most of the existing Transformer models used for time series prediction use the traditional encoder-decoder architecture, which is complex and leads to low model processing efficiency, thus limiting the ability to mine deep time dependencies by increasing model depth. Secondly, the secondary computational complexity of the self-attention mechanism also increases computational overhead and reduces processing efficiency. To address these issues, the paper designs an efficient multi-layer attention-based time-series forecasting model. This model has the following characteristics: (i) It abandons the traditional encoder-decoder based Transformer architecture and constructs a time series prediction model based on multi-layer attention mechanism, improving the model's ability to mine deep time dependencies. (ii) A cross attention module based on cross attention mechanism was designed to enhance information exchange between historical and predictive sequences. (iii) Applying a recently proposed sparse attention mechanism to our model reduces computational overhead and improves processing efficiency. Experiments on multiple datasets have shown that our model can significantly increase the performance of current advanced Transformer methods in time series forecasting, including LogTrans, Reformer, and Informer.

기온예상치를 고려한 모델에 의한 주간최대전력수요예측 (Weekly maximum power demand forecasting using model in consideration of temperature estimation)

  • 고희석;이충식;김종달;최종규
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.511-516
    • /
    • 1996
  • In this paper, weekly maximum power demand forecasting method in consideration of temperature estimation using a time series model was presented. The method removing weekly, seasonal variations on the load and irregularities variation due to unknown factor was presented. The forecasting model that represent the relations between load and temperature which get a numeral expected temperature based on the past 30 years(1961~1990) temperature was constructed. Effect of holiday was removed by using a weekday change ratio, and irregularities variation was removed by using an autoregressive model. The results of load forecasting show the ability of the method in forecasting with good accuracy without suffering from the effect of seasons and holidays. Percentage error load forecasting of all seasons except summer was obtained below 2 percentage. (author). refs., figs., tabs.

  • PDF

의사 결정 구조에 의한 오존 농도예측 (Forecasting Ozone Concentration with Decision Support System)

  • 김재용;김성신;이종범;김신도;김용국
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.19-22
    • /
    • 2000
  • In this paper, we present forecasting ozone concentration with decision support system. Forecasting ozone concentration with decision support system is acquired to information from human knowledge and experiment data. Fuzzy clustering method uses the acquisition and dynamic polynomial neural network gives us a good performance for ozone prediction with ability of superior data approximation and self-organization.

  • PDF

의사 결정 구조에 의한 오존 농도예측 (Forecasting Ozone Concentration with Decision Support System)

  • 김재용;김태헌;김성신;이종범;김신도;김용국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.368-368
    • /
    • 2000
  • In this paper, we present forecasting ozone concentration with decision support system. Since the mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, modeling of ozone prediction system has many problems and results of prediction are not good performance so far. Forecasting ozone concentration with decision support system is acquired to information from human knowledge and experiment data. Fuzzy clustering method uses the acquisition and dynamic polynomial neural network gives us a good performance for ozone prediction with ability of superior data approximation and self-organization.

  • PDF

Neural Network Analysis in Forecasting the Malaysian GDP

  • SANUSI, Nur Azura;MOOSIN, Adzie Faraha;KUSAIRI, Suhal
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권12호
    • /
    • pp.109-114
    • /
    • 2020
  • The aim of this study is to develop basic artificial neural network models in forecasting the in-sample gross domestic product (GDP) of Malaysia. GDP is one of the main indicators in presenting the macro economic condition of a country as set by the world authority bodies such as the World Bank. Hence, this study uses an artificial neural network-based approach to make predictions concerning the economic growth of Malaysia. This method has been proposed due to its ability to overcome multicollinearity among variables, as well as the ability to cope with non-linear problems in Malaysia's growth data. The selected inputs and outputs are based on the previous literatures as well as the economic growth theory. Therefore, the selected inputs are exports, imports, private consumption, government expenditure, consumer price index (CPI), inflation rate, foreign direct investment (FDI) and money supply, which includes M1 and M2. Whilst, the output is real gross domestic product growth rate. The results of this study showed that the neural network method gives the smallest value of mean error which is 0.81 percent with a total difference of 0.70 percent. This implies that the neural network model is appropriate and is a relevant method in forecasting the economic growth of Malaysia.

인공신경망을 이용한 대대전투간 작전지속능력 예측 (A study on Forecasting The Operational Continuous Ability in Battalion Defensive Operations using Artificial Neural Network)

  • 심홍기;김승권
    • 지능정보연구
    • /
    • 제14권3호
    • /
    • pp.25-39
    • /
    • 2008
  • 본 연구는 인공신경망을 이용하여 대대급 방어 작전에서 임의시점에서의 작전지속능력을 예측하는 데 있다. 전투결과에 대한 수학적 모델링은 이를 위한 많은 요인들이 가지는 시?공간적 가변성으로 인해 전투력을 평가하는데 많은 문제점이 있었다. 따라서 이번 연구에서는 대대 전투지휘훈련간 각 부대의 생존률을 전방향 다층 신경망(Feed-Forward Multilayer Perceptrons, MLP)과 일반 회귀신경망(General Regression Neural Network, GRNN)모형에 적용하여 임무달성 여부를 예측하였다. 실험 결과 매개변수들의 비선형적인 관계에도 불구하고 각각 82.62%, 85.48%의 적중률을 보여 일반회귀신경망 모형이 지휘관이 상황을 인식하고 예비대 투입 우선순위 선정 등 실시간 지휘결심을 하는데 도움을 줄 수 있는 방법임을 보여준다.

  • PDF

Forecasting Exchange Rates using Support Vector Machine Regression

  • Chen, Shi-Yi;Jeong, Ki-Ho
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 춘계학술대회
    • /
    • pp.155-163
    • /
    • 2005
  • This paper applies Support Vector Regression (SVR) to estimate and forecast nonlinear autoregressive integrated (ARI) model of the daily exchange rates of four currencies (Swiss Francs, Indian Rupees, South Korean Won and Philippines Pesos) against U.S. dollar. The forecasting abilities of SVR are compared with linear ARI model which is estimated by OLS. Sensitivity of SVR results are also examined to kernel type and other free parameters. Empirical findings are in favor of SVR. SVR method forecasts exchange rate level better than linear ARI model and also has superior ability in forecasting the exchange rates direction in short test phase but has similar performance with OLS when forecasting the turning points in long test phase.

  • PDF

기대주기 분석을 활용한 수요예측 연구: 하이브리드 자동차의 사례를 중심으로 (An Study of Demand Forecasting Methodology Based on Hype Cycle: The Case Study on Hybrid Cars)

  • 전승표
    • 기술혁신학회지
    • /
    • 제14권spc호
    • /
    • pp.1232-1255
    • /
    • 2011
  • 본 연구에서는 신제품 확산 모델 활용에 있어서 보다 적은 노력이 필요하지만 객관적이고 신속한 활용을 가능하게 만들어줄 모형을 제안한다. 기대주기 모델과 소비자 수용 모델이라는 이론적 배경을 바탕으로, 서지분석학과 초기 시장의 규모만으로 최대 잠재 시장을 추정해냄으로써 대표적인 확산 모형인 배스 모형(Bass model)에 필요한 주요 모수를 제공하는 방법을 제시했다. 모형의 예측력을 하이브리드자동차 사례를 통해 분석한 결과, 모형의 예측결과는 여러 가지 객관적인 정보를 통해 추정한 잠재 시장과 유사한 규모를 성공적으로 예측해 내어 모형의 활용 가능성을 확인할 수 있었다. 제안된 모형이 제공한 최대 잠재 시장은 다른 성장곡선모형에도 바로 적용 가능하다는 점을 볼 때 제안된 모형은 서지분석학을 통한 기술 확산 예측과 유망기술 탐색에 새로운 방향을 제시했다고 할 것이다.

  • PDF