• Title/Summary/Keyword: Forecast model

Search Result 1,642, Processing Time 0.026 seconds

A Model of Four Seasons Mixed Heat Demand Prediction Neural Network for Improving Forecast Rate (예측율 제고를 위한 사계절 혼합형 열수요 예측 신경망 모델)

  • Choi, Seungho;Lee, Jaebok;Kim, Wonho;Hong, Junhee
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.82-93
    • /
    • 2019
  • In this study, a new model is proposed to improve the problem of the decline of predict rate of heat demand on a particular date, such as a public holiday for the conventional heat demand forecasting system. The proposed model was the Four Season Mixed Heat Demand Prediction Neural Network Model, which showed an increase in the forecast rate of heat demand, especially for each type of forecast date (weekday/weekend/holiday). The proposed model was selected through the following process. A model with an even error for each type of forecast date in a particular season is selected to form the entire forecast model. To avoid shortening learning time and excessive learning, after each of the four different models that were structurally simplified were learning and a model that showed optimal prediction error was selected through various combinations. The output of the model is the hourly 24-hour heat demand at the forecast date and the total is the daily total heat demand. These forecasts enable efficient heat supply planning and allow the selection and utilization of output values according to their purpose. For daily heat demand forecasts for the proposed model, the overall MAPE improved from 5.3~6.1% for individual models to 5.2% and the forecast for holiday heat demand greatly improved from 4.9~7.9% to 2.9%. The data in this study utilized 34 months of heat demand data from a specific apartment complex provided by the Korea District Heating Corp. (January 2015 to October 2017).

Bayesian networks-based probabilistic forecasting of hydrological drought considering drought propagation (가뭄의 전이 현상을 고려한 수문학적 가뭄에 대한 베이지안 네트워크 기반 확률 예측)

  • Shin, Ji Yae;Kwon, Hyun-Han;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.769-779
    • /
    • 2017
  • As the occurrence of drought is recently on the rise, the reliable drought forecasting is required for developing the drought mitigation and proactive management of water resources. This study developed a probabilistic hydrological drought forecasting method using the Bayesian Networks and drought propagation relationship to estimate future drought with the forecast uncertainty, named as the Propagated Bayesian Networks Drought Forecasting (PBNDF) model. The proposed PBNDF model was composed with 4 nodes of past, current, multi-model ensemble (MME) forecasted information and the drought propagation relationship. Using Palmer Hydrological Drought Index (PHDI), the PBNDF model was applied to forecast the hydrological drought condition at 10 gauging stations in Nakdong River basin. The receiver operating characteristics (ROC) curve analysis was applied to measure the forecast skill of the forecast mean values. The root mean squared error (RMSE) and skill score (SS) were employed to compare the forecast performance with previously developed forecast models (persistence forecast, Bayesian network drought forecast). We found that the forecast skill of PBNDF model showed better performance with low RMSE and high SS of 0.1~0.15. The overall results mean the PBNDF model had good potential in probabilistic drought forecasting.

Comparison of long-term forecasting performance of export growth rate using time series analysis models and machine learning analysis (시계열 분석 모형 및 머신 러닝 분석을 이용한 수출 증가율 장기예측 성능 비교)

  • Seong-Hwi Nam
    • Korea Trade Review
    • /
    • v.46 no.6
    • /
    • pp.191-209
    • /
    • 2021
  • In this paper, various time series analysis models and machine learning models are presented for long-term prediction of export growth rate, and the prediction performance is compared and reviewed by RMSE and MAE. Export growth rate is one of the major economic indicators to evaluate the economic status. And It is also used to predict economic forecast. The export growth rate may have a negative (-) value as well as a positive (+) value. Therefore, Instead of using the ReLU function, which is often used for time series prediction of deep learning models, the PReLU function, which can have a negative (-) value as an output value, was used as the activation function of deep learning models. The time series prediction performance of each model for three types of data was compared and reviewed. The forecast data of long-term prediction of export growth rate was deduced by three forecast methods such as a fixed forecast method, a recursive forecast method and a rolling forecast method. As a result of the forecast, the traditional time series analysis model, ARDL, showed excellent performance, but as the time period of learning data increases, the performance of machine learning models including LSTM was relatively improved.

Analysis of Forecast Performance by Altered Conventional Observation Set (종관 관측 자료 변화에 따른 예보 성능 분석)

  • Han, Hyun-Jun;Kwon, In-Hyuk;Kang, Jeon-Ho;Chun, Hyoung-Wook;Lee, Sihye;Lim, Sujeong;Kim, Taehun
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.21-39
    • /
    • 2019
  • The conventional observations of the Korea Meteorological Administration (KMA) and National Centers for Environmental Prediction (NCEP) are compared in the numerical weather forecast system at the Korea Institute of Atmospheric Prediction Systems (KIAPS). The weather forecasting system used in this study is consists of Korea Integrated Model (KIM) as a global numerical weather prediction model, three-dimensional variational method as a data assimilation system, and KIAPS Package for Observation Processing (KPOP) as an observation pre-processing system. As a result, the forecast performance of NCEP observation was better while the number of observation is similar to the KMA observation. In addition, the sensitivity of forecast performance was investigated for each SONDE, SURFACE and AIRCRAFT observations. The differences in AIRCRAFT observation were not sensitive to forecast, but the use of NCEP SONDE and SURFACE observations have shown better forecast performance. It is found that the NCEP observations have more wind observations of the SONDE in the upper atmosphere and more surface pressure observations of the SURFACE in the ocean. The results suggest that evenly distributed observations can lead to improved forecast performance.

Evaluation of UM-LDAPS Prediction Model for Solar Irradiance by using Ground Observation at Fine Temporal Resolution (고해상도 일사량 관측 자료를 이용한 UM-LDAPS 예보 모형 성능평가)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Kim, Jin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.13-22
    • /
    • 2020
  • Day ahead forecast is necessary for the electricity market to stabilize the electricity penetration. Numerical weather prediction is usually employed to produce the solar irradiance as well as electric power forecast for longer than 12 hours forecast horizon. Korea Meteorological Administration operates the UM-LDAPS model to produce the 36 hours forecast of hourly total irradiance 4 times a day. This study interpolates the hourly total irradiance into 15 minute instantaneous irradiance and then compare them with observed solar irradiance at four ground stations at 1 minute resolution. Numerical weather prediction model employed here was produced at 00 UTC or 18 UTC from January to December, 2018. To compare the statistical model for the forecast horizon less than 3 hours, smart persistent model is used as a reference model. Relative root mean square error of 15 minute instantaneous irradiance are averaged over all ground stations as being 18.4% and 19.6% initialized at 18 and 00 UTC, respectively. Numerical weather prediction is better than smart persistent model at 1 hour after simulation began.

Verification of Precipitation Forecast Model and Application of Hydrology Model in Kyoungan-chun Basin (경안천 유역에 대한 강수예보모델의 검증 및 수문모형활용)

  • Choi, Ji-Hye;Kim, Young-Hwa;Nam, Kyung-Yeub;Oh, Sung-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.215-226
    • /
    • 2006
  • In this study, we performed verification of VSRF (Very Short Range Forecast of precipitation) model and application of NWSPC (National Weather Service PC) rainfall-runoff model in Kyoungan-chun basin. We used two methods for verification of VSRF model. The first method is a meteorological verification that evaluates the special quality feature for rain amount between AWS and VSRF model over Kyoungan-chun basin, while second method is a hydrological verification that compares the calculated Mean Area Precipitation (MAP) between AWS and VSRF Quantitatively. This study examines the usefulness of VSRF precipitation forecasting model data in NWSPC hydrological model. As a result, correlation coefficient is over 0.6 within 3 hour lead time. It represents that the forecast results from VSRF are useful for water resources application.

Development of PM10 Forecasting Model for Seoul Based on DNN Using East Asian Wide Area Data (동아시아 광역 데이터를 활용한 DNN 기반의 서울지역 PM10 예보모델의 개발)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1300-1312
    • /
    • 2019
  • BSTRACT In this paper, PM10 forecast model using DNN(Deep Neural Network) is developed for Seoul region. The previous Julian forecast model has been developed using weather and air quality data of Seoul region only. This model gives excellent results for accuracy and false alarm rates, but poor result for POD(Probability of Detection). To solve this problem, an WA(Wide Area) forecasting model that uses Chinese data is developed. The data is highly correlated with the emergence of high concentrations of PM10 in Korea. As a result, the WA model shows better accuracy, and POD improving of 3%(D+0), 21%(D+1), and 36%(D+2) for each forecast period compared with the Julian model.

Forecasting of IMT-2000 Market Size using Modified Multi-generation Lotka-Volterra Model (변형된 다세대 Lotka-Volterra 모형을 적용한 IMT-2000 가입자 수요예측)

  • Kim, Yun-Bae;Kim, Jae-Beom;Lee, Hee-Sang
    • IE interfaces
    • /
    • v.14 no.1
    • /
    • pp.54-58
    • /
    • 2001
  • In this study, we suggest a multi-generation Lotka-Volterra model, which is a competition model using game theory and complex system theory. The suggested model shows many improvements to weakness of a well known Bass model to forecast new technology in competitive markets. We show that the Lotka-Volterra model has strong power to forecast mobile communication services when it is used for competition of 1st generation mobile phone service and 2nd generation phone service in Korea. We finally use the model to forecast IMT-2000 service, the 3rd generation mobile communication service.

  • PDF

Development of the Selected Multi-model Consensus Technique for the Tropical Cyclone Track Forecast in the Western North Pacific (태풍 진로예측을 위한 다중모델 선택 컨센서스 기법 개발)

  • Jun, Sanghee;Lee, Woojeong;Kang, KiRyong;Yun, Won-Tae
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.375-387
    • /
    • 2015
  • A Selected Multi-model CONsensus (SMCON) technique was developed and verified for the tropical cyclone track forecast in the western North Pacific. The SMCON forecasts were produced by averaging numerical model forecasts showing low 70% latest 6 h prediction errors among 21 models. In the homogeneous comparison for 54 tropical cyclones in 2013 and 2014, the SMCON improvement rate was higher than the other forecasts such as the Non-Selected Multi-model CONsensus (NSMCON) and other numerical models (i.e., GDAPS, GEPS, GFS, HWRF, ECMWF, ECMWF_H, ECMWF_EPS, JGSM, TEPS). However, the SMCON showed lower or similar improvement rate than a few forecasts including ECMWF_EPS forecasts at 96 h in 2013 and at 72 h in 2014 and the TEPS forecast at 120 h in 2013. Mean track errors of the SMCON for two year were smaller than the NSMCON and these differences were 0.4, 1.2, 5.9, 12.9, 8.2 km at 24-, 48-, 72-, 96-, 120-h respectively. The SMCON error distributions showed smaller central tendency than the NSMCON's except 72-, 96-h forecasts in 2013. Similarly, the density for smaller track errors of the SMCON was higher than the NSMCON's except at 72-, 96-h forecast in 2013 in the kernel density estimation analysis. In addition, the NSMCON has lager range of errors above the third quantile and larger standard deviation than the SMCON's at 72-, 96-h forecasts in 2013. Also, the SMCON showed smaller bias than ECMWF_H for the cross track bias. Thus, we concluded that the SMCON could provide more reliable information on the tropical cyclone track forecast by reflecting the real-time performance of the numerical models.

Development of a Transfer Function Model to Forecast Ground-level Ozone Concentration in Seoul (서울지역의 지표오존농도 예보를 위한 전이함수모델 개발)

  • 김유근;손건태;문윤섭;오인보
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.779-789
    • /
    • 1999
  • To support daily ground-level $O_3$ forecasting in Seoul, a transfer function model(TFM) has been developed by using surface meteorological data and pollutant data(previous-day [$O_3$] and [$NO_2$]) from 1 May to 31 August in 1997. The forecast performance of the TFM was evaluated by statistical comparison with $O_3$ concentration observed during September it is shown that correlation coefficient(R), root mean squared error(RMSE), normalized mean squared error(NMSE) and mean relative error(MRE) were 0.73, 15.64, 0.006 and 0.101, respectively. The TFM appeared to have some difficulty forecasting very high $O_3$ concentrations. To compare with this model, multiple regression model(MRM) was developed for the same period. According to statistical comparison between the TFM and MRM. two models had similar predictive capability but TFM based on $O_3$ concentration higher than 60 ppb provided more accurate forecast than MRM. It was concluded that statistical model based on TFM can be useful for improving the accuracy of local $O_3$ forecast.

  • PDF