• Title/Summary/Keyword: Forecast Bias

Search Result 93, Processing Time 0.031 seconds

Impact of Snow Depth Initialization on Seasonal Prediction of Surface Air Temperature over East Asia for Winter Season (겨울철 동아시아 지역 기온의 계절 예측에 눈깊이 초기화가 미치는 영향)

  • Woo, Sung-Ho;Jeong, Jee-Hoon;Kim, Baek-Min;Kim, Seong-Joong
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.117-128
    • /
    • 2012
  • Does snow depth initialization have a quantitative impact on sub-seasonal to seasonal prediction skill? To answer this question, a snow depth initialization technique for seasonal forecast system has been implemented and the impact of the initialization on the seasonal forecast of surface air temperature during the wintertime is examined. Since the snow depth observation can not be directly used in the model simulation due to the large systematic bias and much smaller model variability, an anomaly rescaling method to the snow depth initialization is applied. Snow depth in the model is initialized by adding a rescaled snow depth observation anomaly to the model snow depth climatology. A suite of seasonal forecast is performed for each year in recent 12 years (1999-2010) with and without the snow depth initialization to evaluate the performance of the developed technique. The results show that the seasonal forecast of surface air temperature over East Asian region sensitively depends on the initial snow depth anomaly over the region. However, the sensitivity shows large differences for different timing of the initialization and forecast lead time. Especially, the snow depth anomaly initialized in the late winter (Mar. 1) is the most effective in modulating the surface air temperature anomaly after one month. The real predictability gained by the snow depth initialization is also examined from the comparison with observation. The gain of the real predictability is generally small except for the forecasting experiment in the early winter (Nov. 1), which shows some skillful forecasts. Implications of these results and future directions for further development are discussed.

Re-Transformation of Power Transformation for ARMA(p, q) Model - Simulation Study (ARMA(p, q) 모형에서 멱변환의 재변환에 관한 연구 - 모의실험을 중심으로)

  • Kang, Jun-Hoon;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.511-527
    • /
    • 2015
  • For time series analysis, power transformation (especially log-transformation) is widely used for variance stabilization or normalization for stationary ARMA(p, q) model. A simple and naive back transformed forecast is obtained by taking the inverse function of expectation. However, this back transformed forecast has a bias. Under the assumption that the log-transformed data is normally distributed. The unbiased back transformed forecast can be obtained by the expectation of log-normal distribution; consequently, the property of this back transformation was studied by Granger and Newbold (1976). We investigate the sensitivity of back transformed forecasts under several different underlying distributions using simulation studies.

A Study on The Effects of Long-Term Tidal Constituents on Surge Forecasting Along The Coasts of Korean Peninsula (한국 연안의 장주기 조석성분이 총 수위 예측에 미치는 영향에 관한 연구)

  • Jiha, Kim;Pil-Hun, Chang;Hyun-Suk, Kang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.222-232
    • /
    • 2022
  • In this study we investigated the characteristics of long-term tidal constituents based on 30 tidal gauge data along the coasts of Korea and its the effects on total water level (TWL) forecasts. The results show that the solar annual (Sa) and semiannual (Ssa) tides were dominant among long-term tidal constituents, and they are relatively large in western coast of Korea peninsula. To investigate the effect of long-term tidal constituents on TWL forecasts, we produced predicted tides in 2021 with and without long-term tidal constituents. The TWL forecasts with and without long-term tidal constituents are then calculated by adding surge forecasts into predicted tides. Comparing with the TWL without long-term tidal constituents, the results with long-term tidal constituents reveals small bias in summer and relatively large negative bias in winter. It is concluded that the large error found in winter generally caused by double-counting of meteorological factors in predicted tides and surge forecasts. The predicted surge for 2021 based on the harmonic analysis shows seasonality, and it reduces the large negative bias shown in winter when it subtracted from the TWL forecasts with long-term tidal constituents.

Estimation of Oceanic Total Precipitable Water from HALE UAV (고고도 장기체공무인기 운영고도에서 해양 총가강수량 추정)

  • Cho, Young-Jun;Jang, Hyun-Sung;Ha, Jong-Chul;Choi, Reno K.Y.;Kim, Ki-Hoon;Lim, Eunha;Yun, Jong-Hwan;Lee, Jae-Il;Seong, Ji-In
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.359-370
    • /
    • 2017
  • In this study, the oceanic Total Precipitable Water (TPW) retrieval algorithm at 16 km altitude of High Altitude Long Endurance Unmanned Aerial Vehicle (HALE UAV) is described. Empirical equation based on Wentz method (1995) that uses the 18.7 and 22.235 GHz channels is developed using the simulated brightness temperature and SeeBor training dataset. To do radiative simulation, Satellite Data Simulator Unit (SDSU) Radiative Transfer Model (RTM) is used. The data of 60% (523) and 40% (349) in the SeeBor training dataset are used to develop and validate the TPW retrieval algorithm, respectively. The range of coefficients for the TPW retrieval at the altitude of 3~18 km with 3 km interval were 153.69~199.87 (${\alpha}$), 54.330~58.468 (${\beta}$), and 84.519~93.484 (${\gamma}$). The bias and RMSE at each altitude were found to be about $-0.81kg\;m^{-2}$ and $2.17kg\;m^{-2}$, respectively. Correlation coefficients were more than 0.9. Radiosonde observation has been generally operated over land. To validate the accuracy of the oceanic TPW retrieval algorithm, observation data from the Korea Meteorological Administration (KMA) Gisang 1 research vessel about six clear sky cases representing spring, autumn, and summer season is used. Difference between retrieved and observed TPW at 16 km altitude were in the range of $0.53{\sim}1.87kg\;m^{-2}$, which is reasonable for most applications. Difference in TPW between retrieval and observation at each altitude (3~15 km) is also presented. Differences of TPW at altitudes more than 6 km were $0.3{\sim}1.9kg\;m^{-2}$. Retrieved TPW at 3 km altitude was smaller than upper level with a difference of $-0.25{\sim}0.75kg\;m^{-2}$ compared to the observed TPW.

The Effect of Abnormal Investment on Analyst Earnings Forecast (비정상투자가 재무분석가의 이익예측에 미치는 영향)

  • Jeon, Jin-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2018
  • In this study, targeting KOSPI and KOSDAQ listed companies, the relationship between the abnormal investment of companies and analyst earnings forecasts was empirically analyzed. The analysis period of this study spanned from 2003 to 2015 (with that of dependent variables spanning from 2004 to 2016) based on the variables of interest, and among the companies whose earnings per share forecasts were announced by financial analysts, the final sample of 4,917 companies/year that meets the research condition was selected as the target analysis. The results of the empirical analysis are as follows. First, it turned out that the more total abnormal investment, abnormal R&D and abnormal CAPEX investment, the more accurate were analyst earnings forecasts. Second, the more total abnormal investment, abnormal R&D, abnormal CAPEX investment, the more pessimistic analyst earnings forecasts tended to be. Further analysis has shown that these results came more from over investment groups than under investment groups. The results of this study are expected to make additional contributions to the existing studies in that the abnormal investment is considered as a determinant of analyst earnings forecasts.

Assessment of Performance on the Asian Dust Generation in Spring Using Hindcast Data in Asian Dust Seasonal Forecasting Model (황사장기예측자료를 이용한 봄철 황사 발생 예측 특성 분석)

  • Kang, Misun;Lee, Woojeong;Chang, Pil-Hun;Kim, Mi-Gyeong;Boo, Kyung-On
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.149-162
    • /
    • 2022
  • This study investigated the prediction skill of the Asian dust seasonal forecasting model (GloSea5-ADAM) on the Asian dust and meteorological variables related to the dust generation for the period of 1991~2016. Additionally, we evaluated the prediction skill of those variables depending on the combination of the initial dates in the sub-seasonal scale for the dust source region affecting South Korea. The Asian dust and meteorological variables (10 m wind speed, 1.5 m relative humidity, and 1.5 m air temperature) from GloSea5-ADAM were compared to that from Synoptic observation and European Centre for medium range weather forecasts reanalysis v5, respectively, based on Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Anomaly Correlation Coefficient (ACC) as evaluation criteria. In general, the Asian dust and meteorological variables in the source region showed high ACC in the prediction scale within one month. For all variables, the use of the initial dates closest to the prediction month led to the best performances based on MBE, RMSE, and ACC, and the performances could be improved by adjusting the number of ensembles considering the combination of the initial date. ACC was as high as 0.4 in Spring when using the closest two initial dates. In particular, the GloSea5-ADAM shows the best performance of Asian dust generation with an ACC of 0.60 in the occurrence frequency of Asian dust in March when using the closest initial dates for initial conditions.

Application Analysis of GIS Based Distributed Model Using Radar Rainfall (레이더강우를 이용한 GIS기반의 분포형모형 적용성 분석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • According to recent frequent local flash flood due to climate change, the very short-term rainfall forecast using remotely sensed rainfall like radar is necessary to establish. This research is to evaluate the feasibility of GIS-based distributed model coupled with radar rainfall, which can express temporal and spatial distribution, for multipurpose dam operation during flood season. $Vflo^{TM}$ model was used as physically based distributed hydrologic model. The study area was Yongdam dam basin ($930\;km^2$) and the 3 storm events of local convective rainfall in August 2005, and the typhoon.Ewiniar.and.Bilis.collected from Jindo radar was adopted for runoff simulation. Distributed rainfall consistent with hydrologic model grid resolution was generated by using K-RainVieux, pre-processor program for radar rainfall. The local bias correction for original radar rainfall shows reasonable results of which the percent error from the gauge observation is less than 2% and the bias value is $0.886{\sim}0.908$. The parameters for the $Vflo^{TM}$ were estimated from basic GIS data such as DEM, land cover and soil map. As a result of the 3 events of multiple peak hydrographs, the bias of total accumulated runoff and peak flow is less than 20%, which can provide a reasonable base for building operational real-time short-term rainfall-runoff forecast system.

  • PDF

The Advanced Bias Correction Method based on Quantile Mapping for Long-Range Ensemble Climate Prediction for Improved Applicability in the Agriculture Field (농업적 활용성 제고를 위한 분위사상법 기반의 앙상블 장기기후예측자료 보정방법 개선연구)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Ahn, Joong-Bae;Hur, Jina;Kim, Yong Seok;Choi, Won Jun;Kang, Mingu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • The optimization of long-range ensemble climate prediction for rice phenology model with advanced bias correction method is conducted. The daily long-range forecast(6-month) of mean/ minimum/maximum temperature and observation of January to October during 1991-2021 is collected for rice phenology prediction. In this study, the concept of "buffer period" is newly introduced to reduce the problem after bias correction by quantile mapping with constructing the transfer function by month, which evokes the discontinuity at the borders of each month. The four experiments with different lengths of buffer periods(5, 10, 15, 20 days) are implemented, and the best combinations of buffer periods are selected per month and variable. As a result, it is found that root mean square error(RMSE) of temperatures decreases in the range of 4.51 to 15.37%. Furthermore, this improvement of climatic variables quality is linked to the performance of the rice phenology model, thereby reducing RMSE in every rice phenology step at more than 75~100% of Automated Synoptic Observing System stations. Our results indicate the possibility and added values of interdisciplinary study between atmospheric and agriculture sciences.

Prediction of Power Consumptions Based on Gated Recurrent Unit for Internet of Energy (에너지 인터넷을 위한 GRU기반 전력사용량 예측)

  • Lee, Dong-gu;Sun, Young-Ghyu;Sim, Is-sac;Hwang, Yu-Min;Kim, Sooh-wan;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.120-126
    • /
    • 2019
  • Recently, accurate prediction of power consumption based on machine learning techniques in Internet of Energy (IoE) has been actively studied using the large amount of electricity data acquired from advanced metering infrastructure (AMI). In this paper, we propose a deep learning model based on Gated Recurrent Unit (GRU) as an artificial intelligence (AI) network that can effectively perform pattern recognition of time series data such as the power consumption, and analyze performance of the prediction based on real household power usage data. In the performance analysis, performance comparison between the proposed GRU-based learning model and the conventional learning model of Long Short Term Memory (LSTM) is described. In the simulation results, mean squared error (MSE), mean absolute error (MAE), forecast skill score, normalized root mean square error (RMSE), and normalized mean bias error (NMBE) are used as performance evaluation indexes, and we confirm that the performance of the prediction of the proposed GRU-based learning model is greatly improved.

An Analysis of Model Bias Tendency in Forecast for the Interaction between Mid-latitude Trough and Movement Speed of Typhoon Sanba (중위도 기압골과 태풍 산바의 이동속도와의 상호작용에 대한 예측에서 모델 바이어스 경향분석)

  • Choi, Ki-Seon;Wongsaming, Prapaporn;Park, Sangwook;Cha, Yu-Mi;Lee, Woojeong;Oh, Imyong;Lee, Jae-Shin;Jeong, Sang-Boo;Kim, Dong-Jin;Chang, Ki-Ho;Kim, Jiyoung;Yoon, Wang-Sun;Lee, Jong-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.303-312
    • /
    • 2013
  • Typhoon Sanba was selected for describing the Korea Meteorological Administration (KMA) Global Data Assimilation Prediction System (GDAPS) model bias tendency in forecast for the interaction between mid-latitude trough and movement speed of typhoon. We used the KMA GDAPS analyses and forecasts initiated 00 UTC 15 September 2012 from the historical typhoon record using Typhoon Analysis and Prediction System (TAPS) and Combined Meteorological Information System-3 (COMIS-3). Sea level pressure fields illustrated a development of the low level mid-latitude cyclogenesis in relation to Jet Maximum at 500 hPa. The study found that after Sanba entered the mid-latitude domain, its movement speed was forecast to be accelerated. Typically, Snaba interacted with mid-latitude westerlies at the front of mid-latitude trough. This event occurred when the Sanba was nearing recurvature at 00 and 06 UTC 17 September. The KMA GDAPS sea level pressure forecasts provided the low level mid-latitude cyclone that was weaker than what it actually analyzed in field. As a result, the mid-latitude circulations affecting on Sanba's movement speed was slower than what the KMA GDAPS actually analyzed in field. It was found that these circulations occurred due to the weak mid-tropospheric jet maximum at the 500 hPa. In conclusion, the KMA GDAPS forecast tends to slow a bias of slow movement speed when Sanba interacted with the mid-latitude trough.