DOI QR코드

DOI QR Code

Estimation of Oceanic Total Precipitable Water from HALE UAV

고고도 장기체공무인기 운영고도에서 해양 총가강수량 추정

  • Cho, Young-Jun (Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Jang, Hyun-Sung (School of Earth and Environmental Sciences, Seoul National University) ;
  • Ha, Jong-Chul (Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Choi, Reno K.Y. (Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Ki-Hoon (Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Lim, Eunha (Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Yun, Jong-Hwan (Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Jae-Il (Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Seong, Ji-In (Observation and Forecast Research Division, National Institute of Meteorological Sciences)
  • 조영준 (국립기상과학원 관측예보연구과) ;
  • 장현성 (서울대학교 지구환경과학부) ;
  • 하종철 (국립기상과학원 관측예보연구과) ;
  • 최규용 (국립기상과학원 관측예보연구과) ;
  • 김기훈 (국립기상과학원 관측예보연구과) ;
  • 임은하 (국립기상과학원 관측예보연구과) ;
  • 윤종환 (국립기상과학원 관측예보연구과) ;
  • 이재일 (국립기상과학원 관측예보연구과) ;
  • 성지인 (국립기상과학원 관측예보연구과)
  • Received : 2017.06.23
  • Accepted : 2017.08.11
  • Published : 2017.09.30

Abstract

In this study, the oceanic Total Precipitable Water (TPW) retrieval algorithm at 16 km altitude of High Altitude Long Endurance Unmanned Aerial Vehicle (HALE UAV) is described. Empirical equation based on Wentz method (1995) that uses the 18.7 and 22.235 GHz channels is developed using the simulated brightness temperature and SeeBor training dataset. To do radiative simulation, Satellite Data Simulator Unit (SDSU) Radiative Transfer Model (RTM) is used. The data of 60% (523) and 40% (349) in the SeeBor training dataset are used to develop and validate the TPW retrieval algorithm, respectively. The range of coefficients for the TPW retrieval at the altitude of 3~18 km with 3 km interval were 153.69~199.87 (${\alpha}$), 54.330~58.468 (${\beta}$), and 84.519~93.484 (${\gamma}$). The bias and RMSE at each altitude were found to be about $-0.81kg\;m^{-2}$ and $2.17kg\;m^{-2}$, respectively. Correlation coefficients were more than 0.9. Radiosonde observation has been generally operated over land. To validate the accuracy of the oceanic TPW retrieval algorithm, observation data from the Korea Meteorological Administration (KMA) Gisang 1 research vessel about six clear sky cases representing spring, autumn, and summer season is used. Difference between retrieved and observed TPW at 16 km altitude were in the range of $0.53{\sim}1.87kg\;m^{-2}$, which is reasonable for most applications. Difference in TPW between retrieval and observation at each altitude (3~15 km) is also presented. Differences of TPW at altitudes more than 6 km were $0.3{\sim}1.9kg\;m^{-2}$. Retrieved TPW at 3 km altitude was smaller than upper level with a difference of $-0.25{\sim}0.75kg\;m^{-2}$ compared to the observed TPW.

Keywords

References

  1. Alishouse, J. C., S. A. Snyder, J. Vongsathorn, and R. R. Ferraro, 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811-816. https://doi.org/10.1109/36.58967
  2. Borbas, E. E., S. W. Seemann, H.-L. Huang, J. Li, and W. P. Menzel, 2005: Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity. Proc. Int. ATOVS Study Conf. XIV, Beijing, China, CIMSS/University of Wisconsin-Madison, 763-770.
  3. Carsey, F. D., 1982: Arctic sea ice distribution at end of summer 1973-1976 from satellite microwave data. J. Geophys. Res., 87, 5809-5835. https://doi.org/10.1029/JC087iC08p05809
  4. Cha, J. W., H.-J. Ko, B. Shin, H.-J. Lee, J. E. Kim, B. Ahn, and S.-B. Ryoo, 2016: Characteristics of aerosol mass concentration and chemical composition of the Yellow and South Sea around the Korean peninsula using a Gisang 1 research vessel. Atmosphere, 26, 357-372, doi:10.14191/Atmos.2016.26.3.357 (in Korean with English abstract).
  5. Cho, Y.-J., D.-B. Shin, T.-Y. Kwon, J.-C. Ha, and C.-H. Cho, 2014: Retrieval of thermal tropopause height using temperature profile derived from AMSU-A of Aqua satellite and its application. Atmosphere, 24, 523-532, doi:10.14191/Atmos.2014.24.4.523 (in Korean with English abstract).
  6. Cho, Y.-J., K.-D. Ahn, H.-C. Lee, J.-C. Ha, R. K. Y. Choi, C.-H. Cho, and S.-B. Kim, 2015: The analysis of meteorological environment over Jeju Moseulpo region for HALE UAV. J. Korea Institute Mil. Sci. Technol., 18, 469-477, doi:10.9766/KIMST.2015.18.4.469 (in Korean with English abstract).
  7. Cho, Y.-J., J.-C. Ha, R. K. Y. Choi, K.-H. Kim, E. Lim, S.-B. Kim, and J.-H. Yun, 2016: Vertical analysis of wind speed over South Korea for the flight safety of HALE UAV. J. Korea Institute Mil. Sci. Technol., 19, 551-558, doi:10.9766/KIMST.2016.19.4.551 (in Korean with English abstract).
  8. Chung, E.-S., B. Soden, B. J. Sohn, and L. Shi, 2014: Upper-tropospheric moistening in response to anthropogenic warming. Proc. Nati. Acad. Sci. U.S.A., 111, 11636-11641, doi:10.1073/pnas.1409659111.
  9. Dai, A., J. Wang, P. W. Thorne, D. E. Parker, L. Haimberger, and X. L. Wang, 2011: A new approach to homogenize daily radiosonde humidity data. J. Climate, 24, 965-991, doi:10.1175/2010JCLI3816.1.
  10. Greenwald, T. J., G. L. Stephens, T. H. Vonder Haar, and D. L. Jackson, 1993: A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res., 98, 18471-18488. https://doi.org/10.1029/93JD00339
  11. Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energ. Env., 25, 441-475. https://doi.org/10.1146/annurev.energy.25.1.441
  12. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686-5699. https://doi.org/10.1175/JCLI3990.1
  13. Jung, S.-P., T.-Y. Kwon, and S.-O. Han, 2014: Thermodynamic characteristics associated with localized torrential rainfall events in the middle west region of Korean peninsula. Atmosphere, 24, 457-470, doi:10.14191/Atmos.2014. 24.4.457 (in Korean with English abstract).
  14. Jung, S.-P., T.-Y. Kwon, S.-O. Han, J.-H. Jeong, J. K. Shim, and B.-C. Choi, 2015: Thermodynamic characteristics associated with localized torrential rainfall events in the southwest region of the Korean peninsula. Asia-Pac. J. Atmos. Sci., 51, 229-237, doi:10.1007/s13143-015-0073-6.
  15. KMA, 2009: Guidelines for upper air observation. KMA, 238 pp (in Korean).
  16. Koo, J.-Y., and B.-J. Sohn, 2005: Development of water vapor retrieval algorithm from the sensor simulations for AMSR and HSB of Aqua satellite. J. Korean Meteor. Soc., 41, 625-638 (in Korean with English abstract).
  17. Kwon, H.-T., T. Iwabuchi, and G.-H. Lim, 2007: Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean Peninsula. J. Meteorol. Soc. Japan, 85, 733-746. https://doi.org/10.2151/jmsj.85.733
  18. Kwon, T.-Y., J.-S. Kim, and B.-G. Kim, 2013: Comparison of the properties of Yeongdong and Yeongseo heavy rain. Atmosphere, 23, 245-264, doi:10.14191/Atmos.2013.23.3.245 (in Korean with English abstract).
  19. Lee, D.-K., and S.-Y. Hong, 1989: Numerical experiments of the heavy rainfall event occurred over Korea during 1-3 September 1984. J. Korean Meteor. Soc., 25, 233-260.
  20. Li, J., W. W. Wolf, W. P. Menzel, W. Zhang, H.-L. Huang, and T. H. Achtor, 2000: Global sounding of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteorol., 39, 1248-1268. https://doi.org/10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2
  21. Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Second Edition. Academic Press, San Diego, 583 pp.
  22. Liou, Y.-A., Y.-T. Teng, T. V. Hove, and J. C. Liljegren, 2001: Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteorol., 40, 5-15. https://doi.org/10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2
  23. Lojou, J.-Y., R. Benard, and L. Eymard, 1994: A simple method for testing brightness temperatures from satellite microwave radiometers. J. Atmos. Oceanic Technol., 11, 387-400. https://doi.org/10.1175/1520-0426(1994)011<0387:ASMFTB>2.0.CO;2
  24. Masunaga, H., and Coauthors, 2010: Satellite data simulator unit: A multisensor, multispectral satellite simulator package. Bull. Amer. Meteor. Soc., 91, 1625-1632, doi:10.1175/2010BAMS2809.1.
  25. Matsui, T., X. Zeng, W.-K. Tao, H. Masunaga, W. S. Olson, and S. Lang, 2009: Evaluation of long-term Cloud-Resolving Model simulations using satellite radiance observations and multifrequency satellite simulators. J. Atmos. Oceanic Technol., 26, 1261-1274. https://doi.org/10.1175/2008JTECHA1168.1
  26. Matsui, T., and Coauthors, 2013: GPM satellite simulator over ground validation sites. Bull. Amer. Meteorol. Soc., 94, 1653-1660, doi:10.1175/BAMS-D-12-00160.1.
  27. McCarthy, M. P., P. W. Thorne, and H. A. Tichener, 2009: An analysis of tropospheric humidity trends from radiosondes. J. Climate, 22, 5820-5838. https://doi.org/10.1175/2009JCLI2879.1
  28. McGrath, R., T. Semmler, C. Sweeney, and S. Wang, 2006: Impact of balloon drift errors in radiosonde data on climate statistics. J. Climate, 19, 3430-3442. https://doi.org/10.1175/JCLI3804.1
  29. Mears, C. A., B. D. Santer, F. J. Wentz, K. E. Taylor, and M. F. Wehner, 2007: Relationship between temperature and precipitable water changes over tropical oceans. Geophys. Res. Lett., 34, L24709, doi:10.1029/2007GL031936.
  30. Park, C. H., H. W. Lee, and W. S. Jung, 2003: The effects of low-level jet and topography on heavy rainfall near Mt. Jirisan. J. Korean Meteor. Soc., 39, 441-458 (in Korean with English abstract).
  31. Park, S.-U., S.-S. Kim, and G.-H. Lim, 1983: Low level jets associated with severe storms over Korea. J. Korean Meteor. Soc., 19, 20-36.
  32. Park, S.-U., C.-H. Joung, S.-S. Kim, D.-K. Lee, S.-C. Yoon, Y.-K. Jeong, and S.-G. Hong, 1986: Synoptic-scale features of the heavy rainfall occurred over Korea during 1-3 September 1984. J. Korean Meteor. Soc., 22, 42-81.
  33. Park, S.-U., H.-J. Ahn, and Y.-S. Chun, 1989: Evolution of synoptic scale features associated with a long-lived convective system (21-23 July 1987). J. Korean Meteor. Soc., 25, 168-191.
  34. Petty, G. W., 1994: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part II: Algorithm implementation. Meteor. Atmos. Phys., 54, 101-121. https://doi.org/10.1007/BF01030054
  35. Ross, R. J., and W. P. Elliott, 1996: Tropospheric water vapor climatology and trends over North America: 1973-93. J. Climate, 9, 3561-3574. https://doi.org/10.1175/1520-0442(1996)009<3561:TWVCAT>2.0.CO;2
  36. Schluessel, P., and W. J. Emery, 1990: Atmospheric water vapour over oceans from SSM/I measurements. Int. J. Remote Sens., 11, 753-766. https://doi.org/10.1080/01431169008955055
  37. Seemann, S. W., J. Li, W. P. Menzel, and L. E. Gumley, 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteorol., 42, 1072-1091. https://doi.org/10.1175/1520-0450(2003)042<1072:OROATM>2.0.CO;2
  38. Sohn, B.-J., and E. A. Smith, 2003: Explaining source of discrepancy in SSM/I water vapor algorithm. J. Climate, 16, 3229-3255. https://doi.org/10.1175/1520-0442(2003)016<3229:ESODII>2.0.CO;2
  39. Sohn, B.-J., D.-H. Kim, and H.-S. Chung, 1998: Examining total precipitable water from SSM/I and TOVS over the East Asian summer monsoon region. Korean J. Atmos. Sci., 1, 79-93.
  40. Song, H.-J., and B.-J. Sohn, 2015: Two heavy rainfall types over the Korean peninsula in the humid East Asian summer environment: A satellite observation study. Mon. Wea. Rev., 143, 363-382. https://doi.org/10.1175/MWR-D-14-00184.1
  41. Stephens, G. L., D. L. Jackson, and I. Wittmeyer, 1996: Global observations of upper-tropospheric water vapor derived from TOVS radiance data. J. Climate, 9, 305-326. https://doi.org/10.1175/1520-0442(1996)009<0305:GOOUTW>2.0.CO;2
  42. Swift, C. T., and D. J. Cavalieri, 1985: Passive microwave remote sensing for sea ice research. Eos, Trans. Amer. Geophys. Union, 66, 1210-1212. https://doi.org/10.1029/EO066i049p01210
  43. Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and Its annual cycle using observational and model data. J. Hydrometeor., 8, 758-769. https://doi.org/10.1175/JHM600.1
  44. Wang, J., L. Zhang, A. Dai, T. Van Hove, and J. Van Baelen, 2007: A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res., 112, D11107, doi:10.1029/2006JD007529.
  45. Wentz, F. J., 1992: Measurement of oceanic wind vector using satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens., 30, 960-972. https://doi.org/10.1109/36.175331
  46. Wentz, F. J., 1995: The intercomparison of 53 SSM/I water vapor algorithms. Remote Sensing Systems Tech. Rep. on WetNet Water Vapor Intercomparison Projet (VIP). Remote Sensing Systems, Santa Rosa, CA, 19 pp.
  47. World Meteorological Organization, 1957: A three-dimensional science. WMO Bull., 6, 134-138.
  48. Wulfmeyer, V., R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. D. Girolamo, P. Schlussel, J. V. Baelen, and F. Zus, 2015: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev. Geophys., 53, 819-895, doi:10.1002/2014RG000476.