• Title/Summary/Keyword: Forced drainage

Search Result 25, Processing Time 0.018 seconds

Insulation Coordination of Forced Drainage in Electric Railway (직류방식 전기철도에서 강제배류기의 절연협조)

  • Min, B.H.;Eo, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.446-448
    • /
    • 1999
  • The forced drainage set up to decrease the cathodic protection in each kind of steel conduit laid under the ground is so proscribed to be maintained less than 60V in its output voltage that insulation coordination is easy to be left out of account, on the basis of 60V of working voltage. When railway or subway break down during the service of a subway, 1,500 voltage approximating to line voltage flows through the load terminal of the drainage (rail and underground conduit) though momentary in the worst case. And so, an accident followed by dielectric breakdown, fire and damage by a fire is expected. Therefore, I suggest that insulation coordination should be considered against such a thing on designing, producing and setting up forced drainage.

  • PDF

Mitigation of Stray Current Interference from DC Electric Railroad(2) DICCP System (직류전기철도의 누설전류 간섭대책(2) 분포외부전원시스템)

  • Ha, Yoon-Cheol;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.273-275
    • /
    • 2005
  • The national need to establish a new stray current mitigation method to protect the underground metallic infrastructures in congested downtown area forced us to design and develop the distributed impressed current cathodic protection (DICCP) system. The main purpose of this system is to replace the stray current drainage bond methods, which is widely adopted by pipeline owners in Korea. Currently, forced drainage makes up about 85% of total drainage facilities installed in Korea because polarized drainage can neither drain perfectly the stray currents during normal operation of electric vehicle nor drain the reverse current during regenerative braking at all. The forced drainage, however, has been abused as an alternative cathodic protection system, which impresses currents from rails to the pipelines and accordingly uses the rails as anodes. As a result, it is necessary to consider a new method to both cathodically protect the pipelines and effectively drain the stray currents. In this paper, we describe the design parameters and installation schemes of DICCP system that can meet these demands.

  • PDF

Analysis of the Stray Current Conditions in Subway DC Electrification System (I) Seoul Metropolitan Area (지하철 직류 급전시스템의 표유전류 실태 분석(I) 서울 지역)

  • Ha Yoon-Cheol;Ha Tae-Hyun;Bae Jeong-Hyo;Kim Dae-Kyeong;Lee Hyun-Goo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1364-1366
    • /
    • 2004
  • When an underground pipeline runs parallel with DC-powered railways, it suffers from electrolytic corrosion caused by the stray current leaked from the railway negative returns. Perforation due to the electrolytic corrosion may bring about large-scale accidents even cathodically protected systems. Traditionally, bonding methods such as direct drainage, polarized drainage and forced drainage have been used in order to mitigate the damage on pipelines. In particular, the forced drainage method is widely adopted in Seoul. In this paper, we report the analysis of the stray current conditions in Seoul subway DC electrification system.

  • PDF

Analysis of Nutrient Dynamics and Development of Model for Estimating Nutrient Loading from Paddy Field

  • Jeon, Ji-Hong;Yoon, Chun-G.;Hwang, Ha-Sun;Jung, Kwang-Wook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.57-69
    • /
    • 2003
  • To evaluate nutrient dynamics with different fertilization in paddy field and develop water quality model, mass balance analysis was performed during growing season of 2001-2002 in field experimental plots irrigated with groundwater. As a result of water balance analysis, most of outflow was surface drainage as about half of total outflow and about 500mm was lost by evapotranspiration. The water budget was well balanced. The runoff from paddy field was influenced by rainfall and forced drain. Especially runoff during early cultural periods more depends on the forced drain. As a result of mass balance analysis, most of nutrient was input by fertilization and lost by plant uptake. Significant amount of nitrogen were supplied by precipitation and input from upper paddy field, comprising 12%∼28% of total inflow. Nutrient loading by surface drainage was occurred showing about 15%∼29% for T-N and 6%∼13% for T-P. The response of rice yield with different fertilization was not significant in this study. Water quality model for paddy field developed using Dirac delta function and continuous source was calibrated and validated to surface water quality monitoring data. It demonstrates good agreement between observed and simulated. The nutrient concentration of surface water at paddy field was significantly influenced by fertilization. During early cultural periods when significant amount of fertilizer was applied, surface drainage from paddy field can cause serious water quality problem. Therefore, reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Shallow irrigation, raising the weir height in diked rice fields, and minimizing forced surface drainage are suggested to reduce surface drainage outflow.

Analysis of the Stray Current Conditions in Subway DC Electrification System (II) Busan Metropolitan Area (지하철 직류 급전시스템의 표유전류 실태 분석(II) 부산 지역)

  • Ha Yoon-Cheol;Ha Tae-Hyun;Bae Jeong-Hyo;Kim Dae-Kyeong;Lee Hyun-Goo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1367-1369
    • /
    • 2004
  • When an underground pipeline runs parallel with subway DC electrification system, it suffers from stray current corrosion caused by the stray current from the rails negative returns. Perforation due to the stray current corrosion may bring about disastrous accidents such even in cathodically protected systems. Traditionally, bonding methods such as direct drainage, polarized drainage and forced drainage have been used in order to mitigate the damage on pipelines. In particular, the forced drainage method is widely adopted in Busan. In this paper, we report the real-time measurement data of the pipe-to-soil potential variation in the presence and absence of the IR compensation. The drainage current variation was also measured using the Stray Current Logger developed. By analyzing them, the problems of current countermeasures for stray current corrosion are discussed.

  • PDF

On-site Investigation of the Stray Current Condition in DC-Powered Subway System (지하철 직류 급전시스템의 표유전류 실태조사)

  • Ha, Yoon-Cheol;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.373-375
    • /
    • 2003
  • The subway, a typical electrified transit, is operated by the 1500 V DC-powered system with the overhead positive feeder and the rails negative return. This return path would bring about considerable stray current circuits, that is, from the bottom of rails to sell and then to the station ground, unless the rail-to-soil resistance is sufficiently high. The stray current can cause electrolytic corrosion of subway metallic structures and adjacent underground utilities. In this paper, we reports on-site investigation of the stray current condition, especially influenced by drainage method. The drainage method including both forced drainage and polarized drainage, extensively adopted as a countermeasure for electrolytic corrosion of underground pipelines, was found out to exert a harmful influence upon rail components as well as the pipelines.

  • PDF

Field Test of Mitigation Methods for Stray Currents from DC Electric Railroad(1) Stray Current Drainage System (직류전기철도 전식대책 실증실험(1) 누설전류 배류시스템)

  • Ha, Yoon-Cheol;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong;Choi, Jeong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.220-222
    • /
    • 2007
  • With the wide spread of direct current (DC) electric railroads in Korea, the stray currents or leakage currents from negative return rails become a pending problem to the safety of nearby underground infrastructures. The most widely used mitigation method for this interference is the stray current drainage method, which connects the underground metallic structures to the rails with diodes (polarized drainage) or thyristor (forced drainage). Although this method inherently possesses some drawbacks, its cost effectiveness and efficiency to protect the interfered structures has been the main reason for the wide adoption. In this paper, we show the field test results for the application of stray current drainage system to a city gas pipeline paralleling a depot area of a metropolitan rapid transit system. The process for optimal positioning is briefly illustrated. The effectiveness of constant voltage, constant current, and constant potential drainage schemes was also described.

  • PDF

Analysis of Stray Current Interference between Underground Pipelines and DC Electric Railways (매설배관과 직류전기철도의 표유전류 간섭분석)

  • Ha Y.C.;Bae J.H.;Ha T.H.;Lee H.G.;Kim D.E.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.41-47
    • /
    • 2006
  • When an underground pipeline runs parallel with DC electric railways, it suffers from electrolytic corrosion caused by the stray current leaked from the railway negative returns, i.e., the rails. Perforation due to the electrolytic corrosion may bring about large-scale accidents even under cathodically protected condition. Traditionally, drainage bonding methods have been widely used as a mitigation method for stray current interference. In particular, the increased adoption of forced drainage method to gas pipelines makes the interference much more sophisticated. In this paper, we analyze the electric interference between pipelines and railways from the results of field investigation carried out in Seoul and Busan.

  • PDF

Mitigation of Stray Current Interference from DC Electric Railroad(1) Domestic Conditions (직류전기철도의 누설전류 간섭대책(1) 국내 현황)

  • Ha, Yoon-Cheol;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.270-272
    • /
    • 2005
  • With the wide spread of direct current (DC) electric railroads in Korea, the stray currents from negative return rails become a pending problem to the safety of nearby underground infrastructures, such as gas pipelines, water distribution lines, heat pipelines, POF cables, etc. The mitigation of such interference, however, is mainly dependent on stray current drainage bond methods, which connect the underground metallic structures to the negative feeder cables attached to the rails with diodes (polarized drainage) or thyristors (forced drainage). Despite some merits of these methods, they increase the total amount of stray currents from rails and cause other interference problems. In this paper, we summarize the domestic conditions of stray current interference and describe a conceptual design of other mitigation methods for such interference.

  • PDF