• Title/Summary/Keyword: Forced convective heat Transfer

Search Result 76, Processing Time 0.024 seconds

A Study on Cooling Characteristics of the LED Lamp Heat Sink for Automobile by Forced Convection (강제대류에 의한 자동차용 램프 방열판의 냉각 특성에 LED 관한 연구)

  • Yang, Ho-Dong;Yoo, Jae-Young;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.117-123
    • /
    • 2018
  • Automotive headlamps have been continuously developed as one of the most important devices for securing the driver's view, and the LED lamps are getting popular in recent years. However, in case of the LED lamps, because the heat generated by the LED lamps are too high, it shorten the product life and lower the LED efficiency. Therefore, this study was investigated the cooling characteristics of the LED lamp heat sink for automobile by forced convection for LED heat generation control. In order to analyze the cooling characteristics of the heat sink, the temperature distribution results were investigated through the experiment and computational analysis under the increase of the air flow velocity, and the convective heat transfer coefficient was obtained. Also, convective heat transfer coefficient was calculated by the theoretical formula under the same condition and compared with experimental and computational results. From the result of this study, as the air flow velocity around the heat sink fins increased, the convective heat transfer coefficient significantly increased, confirming the improvement in the cooling effect.

Forced convective Heat Transfer in rectangular channel (사각 채널에서의 강제대류 열전달)

  • Lim, T.W.;You, S.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.37-43
    • /
    • 2012
  • This paper performed experimental research in order to measure boiling heat transfer coefficient of water in microchannel with hydraulic diameter of $500{\mu}m$. Tests were conducted within the ranges of heat fluxes from 100 to 400 kW/$m^2$, vapor qualities from 0 to 0.2, and mass fluxes of 200, 400, and 600 kg/$m^2s$. From the experimental results, it was found that flow boiling heat transfer coefficient is not dependent on mass flux or vapor quality, but instead on heat flux to a certain degree. The measured data of heat transfer are compared to a few available correlations proposed for mini-channels. Among them, Sun and Mishima's correlation is found to predict the present data well, within the mean absolute error of 17.84%.

The Effect of Ultrasonic Vibration on Heat Transfer Augmentation of Forced Convective Flow in Circular Pipes (초음파 진동이 관내 강제대류 유동의 열전달 증진에 미치는 영향)

  • Jeong Ji Hwan
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.275-280
    • /
    • 2004
  • Augmentation of heat transfer by ultrasonic vibration in pipes are investigated. Measurements of convective heat transfer coefficients on circular pipe walls are made with and without ultrasonic vibration applied to water. These data are compared with each other to quantify the effects of ultrasonic vibration on heat transfer enhancement. Numerical analysis has been also performed in order to extend the ranges of examined temperature and flow rate. FLUENT Ver.6.1 is used to simulate velocity and temperature fields and evaluate heat transfer coefficient with and without ultrasonic vibration. The results show that the ultra- sonic vibration enhances the Nusselt number of forced convection flow and the increase rate strongly depends on flow rate.

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

Numerical Study on Convective Heat Transfer in a Compartment Fire(II) - Mixed Convection - (실내화재에 있어서의 대류열전달에 관한 수치연구(II) -혼합대류-)

  • 박외철;고경찬;이광진
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.33-39
    • /
    • 1999
  • In a compartment fire with openings, convective heat transfer consists of natural convection from the hot bodies and forced convection by airflow through the openings. The same finite volume method that was applied to pure natural convection in part I was utilized without modification to the square cavity with two openings. The objective of this study is to investigate effects of the openings on temperature distribution. Flow patterns, temperature distribution and heat transfer were compared for different Rayleigh numbers and with and without the openings.

  • PDF

An Experimental Investigation on Combined Convective Heat Transfer of NonNewtonian Fluids (비뉴톤유체의 복합대류 열전달에 관한 실험적 연구)

  • 김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1770-1779
    • /
    • 1995
  • A combined convective heat transfer study for non-Newtonian fluids was experimentally performed in uniformly heated horizontal tubes with laminar flow in the thermal entry region. Velocity profiles were fully developed at the entrance of the heated sections in the tubes. Aqueous solutions of sodium carboxymethylcellulose(CMC ) were used; their behavior showed a reasonably good fit into the power-law model, .tau.=K.gamma.$^{n}$ . The test sections were made of copper with inside diameters of 3.23 cm and 5.042 cm and lengths of approximately 300 cm. Most experimental runs displayed noticeable secondary flows caused by buoyancy ; when present, secondary flows caused significant increase in the rate of heat transfer over the purely forced-convection case. A correlation, which relates the rate of heat transfer for flows with temperature-dependent properties, free convection effects, and non-newtonian effects, was suggested.

NUMERICAL STUDY ON COMBINED HEAT TRANSFER IN NIR HEATING CHAMBER (근적외선 열풍기의 복합열전달에 관한 수치적 연구)

  • Choi, H.K.;Yoo, G.J.;Kim, I.H.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • Numerical analysis is carried out for combined heat transfer in an indirected NIR(Near Infrared Ray) heating chamber. Reynolds number and shapes of absorbed cylinder are known as important parameters on the combined heat transfer effects. Reynolds number based on the outer diameter of the cylinder is varied from $10^3$ to $3{\times}10^5$. Four difference heat transfer regimes are observed: forced convection and radiative heat transfer on the outer surface of the cylinder, pure conduction in the cylinder body, pure natural convection and radiation between lamp surface and inner surface of the cylinder, and radiation from the lamp. Flow and temperature characteristics are presented with iso-contour lines for the absorbed circular and elliptic cylinders to compare their differences. The convective and radiative heat transfer fluxes are also compared with different Reynolds numbers. As usual, Reynolds number is an important factor to estimate increasing convective heat transfer as it increases. The shape of absorbed cylinder results overall heat transfer rates remain unchanged.

Forced Convective Boiling of Pure Refrigerants in a Bundle of Enhanced Tubes (전열촉진관군의 순수냉매 강제대류비등)

  • Kim, Nae-Hyeon;Jeong, Ho-Jong;Jo, Jin-Pyo;Choe, Guk-Gwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1831-1843
    • /
    • 2001
  • In this study, convective boiling tests were conducted for enhanced tube bundles. The surface geometry consists of pores and connecting gaps. Tubes with three different pore sizes (d$_{p}$ = 0.20, 0.23 and 0.27 mm) were tested using R-123 and R-l34a for the following range: 8 kg/m$^2$s G 26 kg/m$^2$s, 10 kW/m$^2$ q0 40 kW/m$^2$and 0.1 $\chi$ 0.9. The convective boiling heat transfer coefficients were strongly dependent on heat flux with negligible dependency on mass flux or quality. For the present enhanced geometry (pores and gaps), the convective effect was apparent. The gaps of the present tubes may have served routes for the passage of two-phase mixtures, and enhanced the boiling heat transfer. The convective effect was more pronounced at a higher saturation temperature. More bubbles will be generated at a higher saturation temperature, which will lead to enhanced convective contribution. The pore size where the maximum heat transfer coefficient was obtained was larger for R-l34a (d$_{p}$ = 0.27 mm) compared with that for R-123 (d$_{p}$ = 0.23 mm). This trend was consistent with the previous pool boiling results. For the enhanced tube bundles, the convective effect was more pronounced for R-134a than for R-123. This trend was reversed for the smooth tube bundle. Possible reasoning is provided based on the bubble behavior on the tube wall. Both the modified Chen and the asymptotic model predicted the present data reasonably well. The RMSEs were 14.3% for the modified Chen model and 12.7% for the asymptotic model.model.

An Experimental Investigation of Heat Transfer in Forced Convective Boiling of R 134a, R 123 and R 134a/R 123 in a Horizontal Tube

  • Lim, Tae-Woo;Kim, Jun-Hyo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.513-525
    • /
    • 2004
  • This paper reports an experimental study on flow boiling of pure refrigerants R l34a and R l23 and their mixtures in a uniformly heated horizontal tube. The flow pattern was observed through tubular sight glasses with an internal diameter of 10㎜ located at the inlet and outlet of the test section. Tests were run at a pressure of 0.6 MPa in the heat flux ranges of 5-50㎾/㎡, vapor quality 0-100 percent and mass velocity of 150-600㎏/㎡s. Both in the nucleate boiling-dominant region at low quality and in the two-phase convective evaporation region at higher quality where nucleation is supposed to be fully suppressed, the heat transfer coefficient for the mixture was lower than that for an equivalent pure component with the same physical properties as the mixture. The reduction of the heat transfer coefficient in mixture is explained by such mechanisms as mass transfer resistance and non-linear variation in physical properties etc. In this study, the contribution of convective evaporation, which is obtained for pure refrigerants under the suppression of nucleate boiling, is multiplied by the composition factor by Singal et al. (1984). On the basis of Chen's superposition model, a new correlation is presented for heat transfer coefficients of mixture.

Study on the Experiment and Numerical Computation of Forced Convection Heat Transfer around Circular Cylinder in a Rectangular Duct (사각덕트 내에서 원형 실린더 주위의 강제대류 열전달에 대한 실험과 수치계산에 관한 연구)

  • 윤영환;김경환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.490-498
    • /
    • 2004
  • This paper measures the forced convective heat transfer from heated cylinder to air flow in a rectangular duct at Re$_{D}$ =2,337, 4,589, 6,621 and 7,944 through experiments. And the heat transfer is computed by 3-D numerical computation in which various turbulent models are applied. It is shown through the comparison of experimental and computed data that numerical computation with standard k-$\varepsilon$ model predicts the experimental data most accurately. Furthermore, the correlation from the computed heat transfer is almost similar to that from the experiment when Re$_{D}$ is greater than 4,589. In addition, the correlation of McAdams is the closest to that from experimental data among various correlations from literature in the range of Reynolds number.ber.